美文网首页
学习笔记CB005:关键词、语料提取

学习笔记CB005:关键词、语料提取

作者: 利炳根 | 来源:发表于2018-03-06 09:58 被阅读437次

    关键词提取。pynlpir库实现关键词提取。

    # coding:utf-8
    
    import sys
    import importlib
    importlib.reload(sys)
    
    import pynlpir
    
    pynlpir.open()
    s = '怎么才能把电脑里的垃圾文件删除'
    
    key_words = pynlpir.get_key_words(s, weighted=True)
    for key_word in key_words:
        print(key_word[0], 't', key_word[1])
    
    pynlpir.close()
    

    百度接口:https://www.baidu.com/s?wd=机器学习 数据挖掘 信息检索

    安装scrapy pip install scrapy。创建scrapy工程 scrapy startproject baidu_search。做抓取器,创建baidu_search/baidu_search/spiders/baidu_search.py文件。

    # coding:utf-8
    
    import sys
    import importlib
    importlib.reload(sys)
    
    import scrapy
    
    class BaiduSearchSpider(scrapy.Spider):
        name = "baidu_search"
        allowed_domains = ["baidu.com"]
        start_urls = [
                "https://www.baidu.com/s?wd=电脑 垃圾 文件 删除"
        ]
    
        def parse(self, response):
            filename = "result.html"
            with open(filename, 'wb') as f:
                f.write(response.body)
    

    修改settings.py文件,ROBOTSTXT_OBEY = False,USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36' ,DOWNLOAD_TIMEOUT = 5 ,

    进入baidu_search/baidu_search/目录,scrapy crawl baidu_search 。生成result.html,正确抓取网页。

    语料提取。搜索结果只是索引。真正内容需进入链接。分析抓取结果,链接嵌在class=c-container Div h3 a标签 href属性。url添加到抓取队列抓取。提取正文,去掉标签,保存摘要。提取url时,提取标题和摘要,scrapy.Request meta传递到处理函数parse_url,抓取完成后能接到这两个值,提取content。完整数据:url、title、abstract、content。

    # coding:utf-8
    
    import sys
    import importlib
    importlib.reload(sys)
    
    import scrapy
    from scrapy.utils.markup import remove_tags
    
    class BaiduSearchSpider(scrapy.Spider):
        name = "baidu_search"
        allowed_domains = ["baidu.com"]
        start_urls = [
                "https://www.baidu.com/s?wd=电脑 垃圾 文件 删除"
        ]
    
        def parse(self, response):
            # filename = "result.html"
            # with open(filename, 'wb') as f:
            #     f.write(response.body)
            hrefs = response.selector.xpath('//div[contains(@class, "c-container")]/h3/a/@href').extract()
            # for href in hrefs:
            #     print(href)
            #     yield scrapy.Request(href, callback=self.parse_url)
            containers = response.selector.xpath('//div[contains(@class, "c-container")]')
            for container in containers:
                href = container.xpath('h3/a/@href').extract()[0]
                title = remove_tags(container.xpath('h3/a').extract()[0])
                c_abstract = container.xpath('div/div/div[contains(@class, "c-abstract")]').extract()
                abstract = ""
                if len(c_abstract) > 0:
                    abstract = remove_tags(c_abstract[0])
                request = scrapy.Request(href, callback=self.parse_url)
                request.meta['title'] = title
                request.meta['abstract'] = abstract
                yield request
    
        def parse_url(self, response):
            print(len(response.body))
            print("url:", response.url)
            print("title:", response.meta['title'])
            print("abstract:", response.meta['abstract'])
            content = remove_tags(response.selector.xpath('//body').extract()[0])
            print("content_len:", len(content))
    

    参考资料:

    《Python 自然语言处理》

    http://www.shareditor.com/blogshow/?blogId=43

    http://www.shareditor.com/blogshow?blogId=76

    欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

    相关文章

      网友评论

          本文标题:学习笔记CB005:关键词、语料提取

          本文链接:https://www.haomeiwen.com/subject/gnllfftx.html