序
本文主要研究一下flink的Tumbling Window
WindowAssigner
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/windowing/assigners/WindowAssigner.java
@PublicEvolving
public abstract class WindowAssigner<T, W extends Window> implements Serializable {
private static final long serialVersionUID = 1L;
/**
* Returns a {@code Collection} of windows that should be assigned to the element.
*
* @param element The element to which windows should be assigned.
* @param timestamp The timestamp of the element.
* @param context The {@link WindowAssignerContext} in which the assigner operates.
*/
public abstract Collection<W> assignWindows(T element, long timestamp, WindowAssignerContext context);
/**
* Returns the default trigger associated with this {@code WindowAssigner}.
*/
public abstract Trigger<T, W> getDefaultTrigger(StreamExecutionEnvironment env);
/**
* Returns a {@link TypeSerializer} for serializing windows that are assigned by
* this {@code WindowAssigner}.
*/
public abstract TypeSerializer<W> getWindowSerializer(ExecutionConfig executionConfig);
/**
* Returns {@code true} if elements are assigned to windows based on event time,
* {@code false} otherwise.
*/
public abstract boolean isEventTime();
/**
* A context provided to the {@link WindowAssigner} that allows it to query the
* current processing time.
*
* <p>This is provided to the assigner by its containing
* {@link org.apache.flink.streaming.runtime.operators.windowing.WindowOperator},
* which, in turn, gets it from the containing
* {@link org.apache.flink.streaming.runtime.tasks.StreamTask}.
*/
public abstract static class WindowAssignerContext {
/**
* Returns the current processing time.
*/
public abstract long getCurrentProcessingTime();
}
}
- WindowAssigner定义了assignWindows、getDefaultTrigger、getWindowSerializer、isEventTime这几个抽象方法,同时定义了抽象静态类WindowAssignerContext;它有两个泛型,其中T为元素类型,而W为窗口类型
Window
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/windowing/windows/Window.java
@PublicEvolving
public abstract class Window {
/**
* Gets the largest timestamp that still belongs to this window.
*
* @return The largest timestamp that still belongs to this window.
*/
public abstract long maxTimestamp();
}
- Window对象代表把无限流数据划分为有限buckets的集合,它有一个maxTimestamp,代表该窗口数据在该时间点内到达;它有两个子类,一个是GlobalWindow,一个是TimeWindow
TimeWindow
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/windowing/windows/TimeWindow.java
@PublicEvolving
public class TimeWindow extends Window {
private final long start;
private final long end;
public TimeWindow(long start, long end) {
this.start = start;
this.end = end;
}
/**
* Gets the starting timestamp of the window. This is the first timestamp that belongs
* to this window.
*
* @return The starting timestamp of this window.
*/
public long getStart() {
return start;
}
/**
* Gets the end timestamp of this window. The end timestamp is exclusive, meaning it
* is the first timestamp that does not belong to this window any more.
*
* @return The exclusive end timestamp of this window.
*/
public long getEnd() {
return end;
}
/**
* Gets the largest timestamp that still belongs to this window.
*
* <p>This timestamp is identical to {@code getEnd() - 1}.
*
* @return The largest timestamp that still belongs to this window.
*
* @see #getEnd()
*/
@Override
public long maxTimestamp() {
return end - 1;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
TimeWindow window = (TimeWindow) o;
return end == window.end && start == window.start;
}
@Override
public int hashCode() {
return MathUtils.longToIntWithBitMixing(start + end);
}
@Override
public String toString() {
return "TimeWindow{" +
"start=" + start +
", end=" + end +
'}';
}
/**
* Returns {@code true} if this window intersects the given window.
*/
public boolean intersects(TimeWindow other) {
return this.start <= other.end && this.end >= other.start;
}
/**
* Returns the minimal window covers both this window and the given window.
*/
public TimeWindow cover(TimeWindow other) {
return new TimeWindow(Math.min(start, other.start), Math.max(end, other.end));
}
// ------------------------------------------------------------------------
// Serializer
// ------------------------------------------------------------------------
//......
// ------------------------------------------------------------------------
// Utilities
// ------------------------------------------------------------------------
/**
* Merge overlapping {@link TimeWindow}s. For use by merging
* {@link org.apache.flink.streaming.api.windowing.assigners.WindowAssigner WindowAssigners}.
*/
public static void mergeWindows(Collection<TimeWindow> windows, MergingWindowAssigner.MergeCallback<TimeWindow> c) {
// sort the windows by the start time and then merge overlapping windows
List<TimeWindow> sortedWindows = new ArrayList<>(windows);
Collections.sort(sortedWindows, new Comparator<TimeWindow>() {
@Override
public int compare(TimeWindow o1, TimeWindow o2) {
return Long.compare(o1.getStart(), o2.getStart());
}
});
List<Tuple2<TimeWindow, Set<TimeWindow>>> merged = new ArrayList<>();
Tuple2<TimeWindow, Set<TimeWindow>> currentMerge = null;
for (TimeWindow candidate: sortedWindows) {
if (currentMerge == null) {
currentMerge = new Tuple2<>();
currentMerge.f0 = candidate;
currentMerge.f1 = new HashSet<>();
currentMerge.f1.add(candidate);
} else if (currentMerge.f0.intersects(candidate)) {
currentMerge.f0 = currentMerge.f0.cover(candidate);
currentMerge.f1.add(candidate);
} else {
merged.add(currentMerge);
currentMerge = new Tuple2<>();
currentMerge.f0 = candidate;
currentMerge.f1 = new HashSet<>();
currentMerge.f1.add(candidate);
}
}
if (currentMerge != null) {
merged.add(currentMerge);
}
for (Tuple2<TimeWindow, Set<TimeWindow>> m: merged) {
if (m.f1.size() > 1) {
c.merge(m.f1, m.f0);
}
}
}
/**
* Method to get the window start for a timestamp.
*
* @param timestamp epoch millisecond to get the window start.
* @param offset The offset which window start would be shifted by.
* @param windowSize The size of the generated windows.
* @return window start
*/
public static long getWindowStartWithOffset(long timestamp, long offset, long windowSize) {
return timestamp - (timestamp - offset + windowSize) % windowSize;
}
}
- TimeWindow有start及end属性,其中start为inclusive,而end为exclusive,所以maxTimestamp返回的是end-1;这里重写了equals及hashcode方法
- TimeWindow提供了intersects方法用于表示本窗口与指定窗口是否有交叉;而cover方法用于返回本窗口与指定窗口的重叠窗口
- TimeWindow还提供了mergeWindows及getWindowStartWithOffset静态方法;前者用于合并重叠的时间窗口,后者用于获取指定timestamp、offset、windowSize的window start
TumblingEventTimeWindows
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/windowing/assigners/TumblingEventTimeWindows.java
@PublicEvolving
public class TumblingEventTimeWindows extends WindowAssigner<Object, TimeWindow> {
private static final long serialVersionUID = 1L;
private final long size;
private final long offset;
protected TumblingEventTimeWindows(long size, long offset) {
if (offset < 0 || offset >= size) {
throw new IllegalArgumentException("TumblingEventTimeWindows parameters must satisfy 0 <= offset < size");
}
this.size = size;
this.offset = offset;
}
@Override
public Collection<TimeWindow> assignWindows(Object element, long timestamp, WindowAssignerContext context) {
if (timestamp > Long.MIN_VALUE) {
// Long.MIN_VALUE is currently assigned when no timestamp is present
long start = TimeWindow.getWindowStartWithOffset(timestamp, offset, size);
return Collections.singletonList(new TimeWindow(start, start + size));
} else {
throw new RuntimeException("Record has Long.MIN_VALUE timestamp (= no timestamp marker). " +
"Is the time characteristic set to 'ProcessingTime', or did you forget to call " +
"'DataStream.assignTimestampsAndWatermarks(...)'?");
}
}
@Override
public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
return EventTimeTrigger.create();
}
@Override
public String toString() {
return "TumblingEventTimeWindows(" + size + ")";
}
public static TumblingEventTimeWindows of(Time size) {
return new TumblingEventTimeWindows(size.toMilliseconds(), 0);
}
public static TumblingEventTimeWindows of(Time size, Time offset) {
return new TumblingEventTimeWindows(size.toMilliseconds(), offset.toMilliseconds());
}
@Override
public TypeSerializer<TimeWindow> getWindowSerializer(ExecutionConfig executionConfig) {
return new TimeWindow.Serializer();
}
@Override
public boolean isEventTime() {
return true;
}
}
- TumblingEventTimeWindows继承了Window,其中元素类型为Object,而窗口类型为TimeWindow;它有两个参数,一个是size,一个是offset,其中offset必须大于等于0,size必须大于offset
- assignWindows方法获取的窗口为start及start+size,而start=TimeWindow.getWindowStartWithOffset(timestamp, offset, size);getDefaultTrigger方法返回的是EventTimeTrigger;getWindowSerializer方法返回的是TimeWindow.Serializer();isEventTime返回true
- TumblingEventTimeWindows提供了of静态工厂方法,可以指定size及offset参数
TumblingProcessingTimeWindows
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/windowing/assigners/TumblingProcessingTimeWindows.java
public class TumblingProcessingTimeWindows extends WindowAssigner<Object, TimeWindow> {
private static final long serialVersionUID = 1L;
private final long size;
private final long offset;
private TumblingProcessingTimeWindows(long size, long offset) {
if (offset < 0 || offset >= size) {
throw new IllegalArgumentException("TumblingProcessingTimeWindows parameters must satisfy 0 <= offset < size");
}
this.size = size;
this.offset = offset;
}
@Override
public Collection<TimeWindow> assignWindows(Object element, long timestamp, WindowAssignerContext context) {
final long now = context.getCurrentProcessingTime();
long start = TimeWindow.getWindowStartWithOffset(now, offset, size);
return Collections.singletonList(new TimeWindow(start, start + size));
}
public long getSize() {
return size;
}
@Override
public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
return ProcessingTimeTrigger.create();
}
@Override
public String toString() {
return "TumblingProcessingTimeWindows(" + size + ")";
}
public static TumblingProcessingTimeWindows of(Time size) {
return new TumblingProcessingTimeWindows(size.toMilliseconds(), 0);
}
public static TumblingProcessingTimeWindows of(Time size, Time offset) {
return new TumblingProcessingTimeWindows(size.toMilliseconds(), offset.toMilliseconds());
}
@Override
public TypeSerializer<TimeWindow> getWindowSerializer(ExecutionConfig executionConfig) {
return new TimeWindow.Serializer();
}
@Override
public boolean isEventTime() {
return false;
}
}
- TumblingProcessingTimeWindows继承了WindowAssigner,其中元素类型为Object,而窗口类型为TimeWindow;它有两个参数,一个是size,一个是offset,其中offset必须大于等于0,size必须大于offset
- assignWindows方法获取的窗口为start及start+size,而start=TimeWindow.getWindowStartWithOffset(now, offset, size),而now值则为context.getCurrentProcessingTime(),则是与TumblingEventTimeWindows的不同之处,TumblingProcessingTimeWindows不使用timestamp参数来计算,它使用now值替代;getDefaultTrigger方法返回的是ProcessingTimeTrigger,而isEventTime方法返回的为false
- TumblingProcessingTimeWindows也提供了of静态工厂方法,可以指定size及offset参数
小结
- flink的Tumbling Window分为TumblingEventTimeWindows及TumblingProcessingTimeWindows,它们都继承了WindowAssigner,其中元素类型为Object,而窗口类型为TimeWindow;它有两个参数,一个是size,一个是offset,其中offset必须大于等于0,size必须大于offset
- WindowAssigner定义了assignWindows、getDefaultTrigger、getWindowSerializer、isEventTime这几个抽象方法,同时定义了抽象静态类WindowAssignerContext;它有两个泛型,其中T为元素类型,而W为窗口类型;TumblingEventTimeWindows及TumblingProcessingTimeWindows的窗口类型为TimeWindow,它有start及end属性,其中start为inclusive,而end为exclusive,maxTimestamp返回的是end-1,它还提供了mergeWindows及getWindowStartWithOffset静态方法;前者用于合并重叠的时间窗口,后者用于获取指定timestamp、offset、windowSize的window start
- TumblingEventTimeWindows及TumblingProcessingTimeWindows的不同在于assignWindows、getDefaultTrigger、isEventTime方法;前者assignWindows使用的是参数中的timestamp,而后者使用的是now值;前者的getDefaultTrigger返回的是EventTimeTrigger,而后者返回的是ProcessingTimeTrigger;前者isEventTime方法返回的为true,而后者返回的为false
网友评论