索引:
在Elasticsearch中存储数据的行为就叫做索引(indexing),不过在索引之前,我们需要明确数据应该存储在哪里。文档归属于一种类型(type),而这些类型存在于索引(index)中
数据库与ElasticSearch对比图:
DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices -> Types -> Documents -> Fields
Elasticsearch集群可以包含多个索引(indices)(数据库),每一个索引可以包含多个类型(types)(表),每一个类型包含多个文档(documents)(行),然后每个文档包含多个字段(Fields)(列)。
索引含义的区分:
你可能已经注意到索引(index)这个词在Elasticsearch中有着不同的含义,所以有必要在此做一下区分:
索引(名词) 如上文所述,一个索引(index)就像是传统关系数据库中的数据库,它是相关文档存储的地方,index的复数是indices 或indexes。
索引(动词) 「索引一个文档」表示把一个文档存储到索引(名词)里,以便它可以被检索或者查询。这很像SQL中的INSERT关键字,差别是,如果文档已经存在,新的文档将覆盖旧的文档。
倒排索引 传统数据库为特定列增加一个索引,例如B-Tree索引来加速检索。Elasticsearch和Lucene使用一种叫做倒排索引(inverted index)的数据结构来达到相同目的。
默认情况下,文档中的所有字段都会被索引(拥有一个倒排索引),只有这样他们才是可被搜索的。
为每个员工的文档(document)建立索引,每个文档包含了相应员工的所有信息。
每个文档的类型为employee。
employee类型归属于索引megacorp。
megacorp索引存储在Elasticsearch集群中。
我们能通过一个命令执行完成的操作:
PUT /megacorp/employee/1
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
我们看到path:/megacorp/employee/1包含三部分信息:
megacorp 索引名
employee 类型名
1 这个员工的ID
请求实体(JSON文档),包含了这个员工的所有信息。他的名字叫“John Smith”,25岁,喜欢攀岩。
注意:
如果让ID自动增长,可以像下面这样:
(原来是把文档存储到某个ID对应的空间,现在是把这个文档添加到某个_type下)
POST /website/blog/
{
"title": "My second blog entry",
"text": "Still trying this out...",
"date": "2014/01/01"
}
检索:
GET /website/blog/123?pretty
pretty的意思是对输出的格式进行美化。
返回:
{
"_index": "website",
"_type": "blog",
"_id": "123",
"_version": 2,
"found": true,
"_source": {
"title": "My first blog entry",
"text": "Just trying this out...",
"date": "2014/01/01"
}
}
GET /website/blog/123?_source=title,text
对_source字段里的属性进行过滤。
返回:
{
"_index": "website",
"_type": "blog",
"_id": "123",
"_version": 2,
"found": true,
"_source": {
"text": "Just trying this out...",
"title": "My first blog entry"
}
}
GET /website/blog/123/_source
只查询_source字段。
返回:
{
"title": "My first blog entry",
"text": "Just trying this out...",
"date": "2014/01/01"
}
=========================================================================================
GET /website/blog/_search
检索全部信息
返回:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "website",
"_type": "blog",
"_id": "123",
"_score": 1,
"_source": {
"title": "My first blog entry",
"text": "Just trying this out...",
"date": "2014/01/01"
}
}
]
}
}
GET /megacorp/employee/_search?q=first_name:Jane
检索全部信息并且first_name是Jane。
返回:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.2876821,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
}
使用DSL语句查询
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}
返回:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.2876821,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.2876821,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.2876821,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
]
}
}
全文检索,会检索about属性里包含love字符的员工。
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"about" : "love"
}
}
}
返回:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.26742277,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.26742277,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
]
}
}
短语搜索
目前我们可以在字段中搜索单独的一个词,这挺好的,但是有时候你想要确切的匹配若干个单词或者短语(phrases)。例如我们想要查询同时包含"rock"和"climbing"(并且是相邻的)的员工记录。
要做到这个,我们只要将match查询变更为match_phrase查询即可:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
返回:
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
]
}
}
高亮我们的搜索
很多应用喜欢从每个搜索结果中高亮(highlight)匹配到的关键字,这样用户可以知道为什么这些文档和查询相匹配。在Elasticsearch中高亮片段是非常容易的。
让我们在之前的语句上增加highlight参数:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
返回:
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
},
"highlight": {
"about": [
"I love to go <em>rock</em> <em>climbing</em>" <1>
]
}
}
]
}
}
网友评论