美文网首页Android进阶
AndroidX的内置对象池

AndroidX的内置对象池

作者: RxCode | 来源:发表于2019-11-09 20:35 被阅读0次

    我们经常会遇到使用对象复用的场景,比如线程池,数据库连接池,Android的消息机制里面的Message的通过静态方法obtain()获取消息,EventBus在的解析监听事件的订阅者对象里的标有@subscribe的方法而引入的SubscriberMethodFinder.FindState对象池FIND_STATE_POOL,Glide在请求加载图像的时候EngineJob内部的Pools.Pool<EngineJob<?>> pool和解码DecodeJob内部的Pools.Pool<DecodeJob<?>> pool。因为对象创建的开销过大,为了避免每一次用到某个对象的时候都去new一个新的对象。对象池提供了这样一种机制,当我们需要某个对象的时候,我们希望先尝试从对象池(相当于缓存)中获取,如果有就直接返回,此时对象池应该空一个位子出来(即对象池的元素个数减一),没有则新创建一个对象返回,当对象用完以后,如果对象池还有空余位置则存放入其中同时对象池中元素的个数+1。
    如何实现一个对象池呢?软件开发中经常说的一句话是面向接口而不是面向实现编程,因此将对象池抽象成一个接口。由于接口是功能的集合,对象池应该对外提供哪些功能呢?既然是对象池,那么它必然有一个获取对象和回收对象的方法。由于我们希望它是一个通用型的接口,对任意的类型都适用,任意类型都能实现获取和回收,因此需要用到泛型,我们用Pool来表示对象池,用acquire来表示获取对象,用recycle来表示回收对象,于是就有可以得到下面这个接口。

    public interface Pool<T> {
      //从对象池中获取对象
      T acquire();
      //将不需要的对象放回对象池,返回值boolen类型表示是否回收成功
      boolean recycle(T t);
    }
    

    有了上面的接口,我们就来尝试何实现一个简单的对象池。既然是对象池,必然容量是有限的,同时必须大于0,如何存放对象呢,最简单的方式是用数组。我们获取对象的时候就查询一下这个数组,看看其中有没有可用的元素,有就返回此元素同时将该处位原来的元素置空,不然会出现内存泄漏,没有就返回null。回收对象的时候先遍历一下数组是不是已经填满了,没有填满,就放入数组中,于是有下面的简单实现。

     public class SimplePool<T> implements Pool<T> {
            private final Object[] mElements;
            private final int mMaxPoolSize;
            public SimplePool(int maxPoolSize) {
                if (maxPoolSize <= 0) {
                    throw new IllegalArgumentException("The max pool size must be > 0");
                }
                mMaxPoolSize = maxPoolSize;
                mElements = new Object[maxPoolSize];
            }
    
            @Override
            public T acquire() {
                for (int i = 0; i < mMaxPoolSize; i++) {
                    if (mElements[i] != null) {
                        T ele = (T) mElements[i];
                        mElements[i] = null;//置空,避免内存泄漏
                        return ele;
                    }
                }
               return null;
            }
    
            @Override
            public boolean recycle(T t) {
                for (int i = 0; i < mMaxPoolSize; i++) {
                    if (mElements[i] == null) {
                        mElements[i] = t;
                        return true;
                    }
                }
                return false;
            }
        }
    
    

    有了这个简单的设计之后,就可以使用了,一般都是将这个类简单的设计在某个工具类中使用,我们不妨定义一个工具类叫PoolUtils,定义要复用的对象类型为HeavyObject,如下所示:

    class HeavyObject {
        public HeavyObject (){
          //开销大的操作
         。。。。
        }
    }
    
    class PoolUtils {
      private static final Pool<HeavyObject> sPool = new SimplePool<>(10);
      //获取对象
      public static HeavyObject obtain() {
        HeavyObject obj = sPool.acquire();
        return obj != null ? obj : new HeavyObject(); //没有就创建新的
      }
      //回收对象
      public static boolean recycle(HeavyObject object) {
       return sPool.recycle(object);
      }
    }
    

    在回头看看我们实现的SimplePool设计得如何呢?emmm,我们发现aquirerecycle方法总会从从头到尾到数组的遍历。假如我们的缓存数组mElements的大小为n,开始时数组里面其实并没有元素,此时aquire方法的时间复杂度读为O(n)(并且还没有获取到元素),recycle方法的时间复杂度为O(1)(放在下标为0的位置),而当数组mElements中填满元素后,aquire方法的时间复杂度读为O(1)(返回下标为0处的元素),recycle方法的时间复杂度为O(n)(遍历完数组后仍然不能存放)。我们希望aquirerecycle方法无论在mElements是否有数据的情况下都能做到时间复杂度为O(1),那么如何做到这一点呢?
    不难通过分析发现,aquirerecycle方法只要记住上次存取的位置就行了,我们将元素连续存放,比如上次是在下标为i处存放了元素(下标从0~i都有数据),那么aquire则从i处获取,recycle方法则在i+1处存放,只要i+1<n.实际上i+1即为缓存池里面已经存放的元素的个数,于是我们引入一个变量mPoolSize用于记录缓存池里面已经存放的元素个数。对SimplePool做一次修改。

        public class SimplePool<T> implements Pool<T> {
            private final Object[] mElements;
            private final int mMaxPoolSize;
            private int mPoolSize;
    
            public SimplePool(int maxPoolSize) {
                if (maxPoolSize <= 0) {
                    throw new IllegalArgumentException("The max pool size must be > 0");
                }
                mMaxPoolSize = maxPoolSize;
                mElements = new Object[maxPoolSize];
            }
    
            @Override
            public T acquire() {
                if (mPoolSize > 0) {
                    int lastPooledIndex = mPoolSize - 1;
                    T t= (T) mElements[lastPooledIndex];
                    mElements[lastPooledIndex] = null;//置空,避免内存泄漏
                    mPoolSize--;
                    return t;
                }
                return null;
            }
    
            @Override
            public boolean recycle(T t) {
                if (mPoolSize < mMaxPoolSize) {
                    mElements[mPoolSize] = t;
                    mPoolSize++;
                    return true;
                }
                return false;
            }
        }
    

    通过重构,现在的acquirerecycle方法只需要做一次判断,而不用从头开始遍历数组,因此时间复杂度都成了O(1).
    看起来一切都很完美了,但是事情好像并没有那么简单,在多线程的情况下,比如某一时刻A线程正在执行aquire操作,B线程正在执行recycle操作很容易出现很容出现数据不一致的的安全性问题。看来我们得考虑一下线程安全的问题了。
    为了能给用户提供一个分别线程安全和线程不安全的对象池,我们将线程安全的对象池的实现命名为SynchronizedPool,并给出实现

    public class SynchronizedPool<T> implements Pool<T> {
            private final Object mLock = new Object();
            private final Object[] mElements;
            private final int mMaxPoolSize;
            private int mPoolSize;
    
            public SynchronizedPool(int maxPoolSize) {
                if (maxPoolSize <= 0) {
                    throw new IllegalArgumentException("The max pool size must be > 0");
                }
                mMaxPoolSize = maxPoolSize;
                mElements = new Object[maxPoolSize];
            }
    
            @Override
            public T acquire() {
                synchronized (mLock) {
                    if (mPoolSize > 0) {
                        final int lastPooledIndex = mPoolSize - 1;
                        T instance = (T) mElements[lastPooledIndex];
                        mElements[lastPooledIndex] = null;//置空,避免内存泄漏
                        mPoolSize--;
                        return instance;
                    }
                    return null;
                }
            }
    
            @Override
            public boolean recycle(T t) {
                synchronized (mLock) {
                    if (mPoolSize < mMaxPoolSize) {
                        mElements[mPoolSize] = t;
                        mPoolSize++;
                        return true;
                    }
                    return false;
                }
            }
        }
    

    于是我们能够提供了一个用户自己选择的对象池创建工厂方法,,让用户自定义是需要线程安全的还是线程不安全的版本:

    class PoolFactory {
      public static <T> Pool<T> createPool(boolean threadSafe, int maxPoolSize) {
                return threadSafe ? new SynchronizedPool<T>(maxPoolSize) : new SimplePool<T>(maxPoolSize);
        }
     }
    

    看到到这里读者会问,这和标题有什么关系?实际上androidX已经提供了一个内置的对象复用池,如下所示

    package androidx.core.util;
    
    import androidx.annotation.NonNull;
    import androidx.annotation.Nullable;
    
    /**
     * Helper class for creating pools of objects. An example use looks like this:
     * <pre>
     * public class MyPooledClass {
     *
     *     private static final SynchronizedPool<MyPooledClass> sPool =
     *             new SynchronizedPool<MyPooledClass>(10);
     *
     *     public static MyPooledClass obtain() {
     *         MyPooledClass instance = sPool.acquire();
     *         return (instance != null) ? instance : new MyPooledClass();
     *     }
     *
     *     public void recycle() {
     *          // Clear state if needed.
     *          sPool.release(this);
     *     }
     *
     *     . . .
     * }
     * </pre>
     *
     */
    public final class Pools {
    
        /**
         * Interface for managing a pool of objects.
         *
         * @param <T> The pooled type.
         */
        public interface Pool<T> {
    
            /**
             * @return An instance from the pool if such, null otherwise.
             */
            @Nullable
            T acquire();
    
            /**
             * Release an instance to the pool.
             *
             * @param instance The instance to release.
             * @return Whether the instance was put in the pool.
             *
             * @throws IllegalStateException If the instance is already in the pool.
             */
            boolean release(@NonNull T instance);
        }
    
        private Pools() {
            /* do nothing - hiding constructor */
        }
    
        /**
         * Simple (non-synchronized) pool of objects.
         *
         * @param <T> The pooled type.
         */
        public static class SimplePool<T> implements Pool<T> {
            private final Object[] mPool;
    
            private int mPoolSize;
    
            /**
             * Creates a new instance.
             *
             * @param maxPoolSize The max pool size.
             *
             * @throws IllegalArgumentException If the max pool size is less than zero.
             */
            public SimplePool(int maxPoolSize) {
                if (maxPoolSize <= 0) {
                    throw new IllegalArgumentException("The max pool size must be > 0");
                }
                mPool = new Object[maxPoolSize];
            }
    
            @Override
            @SuppressWarnings("unchecked")
            public T acquire() {
                if (mPoolSize > 0) {
                    final int lastPooledIndex = mPoolSize - 1;
                    T instance = (T) mPool[lastPooledIndex];
                    mPool[lastPooledIndex] = null;//置空,避免内存泄漏
                    mPoolSize--;
                    return instance;
                }
                return null;
            }
    
            @Override
            public boolean release(@NonNull T instance) {
                if (isInPool(instance)) {
                    throw new IllegalStateException("Already in the pool!");
                }
                if (mPoolSize < mPool.length) {
                    mPool[mPoolSize] = instance;
                    mPoolSize++;
                    return true;
                }
                return false;
            }
    
            private boolean isInPool(@NonNull T instance) {
                for (int i = 0; i < mPoolSize; i++) {
                    if (mPool[i] == instance) {
                        return true;
                    }
                }
                return false;
            }
        }
    
        /**
         * Synchronized) pool of objects.
         *
         * @param <T> The pooled type.
         */
        public static class SynchronizedPool<T> extends SimplePool<T> {
            private final Object mLock = new Object();
    
            /**
             * Creates a new instance.
             *
             * @param maxPoolSize The max pool size.
             *
             * @throws IllegalArgumentException If the max pool size is less than zero.
             */
            public SynchronizedPool(int maxPoolSize) {
                super(maxPoolSize);
            }
    
            @Override
            public T acquire() {
                synchronized (mLock) {
                    return super.acquire();
                }
            }
    
            @Override
            public boolean release(@NonNull T element) {
                synchronized (mLock) {
                    return super.release(element);
                }
            }
        }
    }
    

    通过对比我们的设计和androidX的设计,发现androidX的SimplePool多了一个isInPool方法,也就是校验是否复用池里面已经有相同的对象了,如果存在就没有必要再放入一个元素,不然也就失去了复用的意义。同时SynchronizedPool的方法的实现是继承了SimplePool,只是在复写acquirerelease方法的时候加了一个锁,这样代码的复用率更高了。
    如果读者有看过Glide源码的话,会发现Glide我们前面的PoolFactory上面更进了一步,它提供了将工厂模式和对象池复用的精妙操作,一起来学习一下。
    定义一个工厂接口Factory

        /**
         * Creates new instances of the given type.
         * 创建指定类型的新的实例
         *
         * @param <T> The type of Object that will be created.
         */
        public interface Factory<T> {
            T create();
        }
    

    定义了一个对象被放回对象池时可能进行重置状态操作的接口Resetter

          /**
         * Resets state when objects are returned to the pool.
         * 当对象放回复用池时重置状态
         *
         * @param <T> The type of Object that will be reset.
         */
        public interface Resetter<T> {
            void reset(@NonNull T object);
        }
    

    定义了处理回收标记的抽象类StateVerifier

        public abstract class StateVerifier {
    
            /**
             * Throws an exception if we believe our object is recycled and inactive (i.e. is currently in an
             * object pool).
             * 如果我们确信我们的对象已经被回收并且不再处于活跃状态(例如当前在对象池)时抛出异常
             */
            public abstract void throwIfRecycled();
    
            /** 
             * Sets whether or not our object is recycled. 
             * 标记对象是否已经被回收
             * */
            abstract void setRecycled(boolean isRecycled);
            
        }
    

    定义了需要可回收时的校验接口Poolable

       /**
         * Allows additional verification to catch errors caused by using objects while they are in an
         * object pool.
         * 允许额外的校验来捕获因使用在对象池的对象而产生的异常,
         */
        public interface Poolable {
            @NonNull
            StateVerifier getVerifier();
        }
    

    将上面的整合一下

      private static final class FactoryPool<T> implements Pool<T> {
        private final Factory<T> factory;
        private final Resetter<T> resetter;
        private final Pool<T> pool;
    
        FactoryPool(@NonNull Pool<T> pool, @NonNull Factory<T> factory, @NonNull Resetter<T> resetter) {
          this.pool = pool;
          this.factory = factory;
          this.resetter = resetter;
        }
    
        @Override
        public T acquire() {
          T result = pool.acquire();//先从对象池中获取
          if (result == null) {
            result = factory.create();//没获取到则通过工厂方法来创建
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
              Log.v(TAG, "Created new " + result.getClass());
            }
          }
          if (result instanceof Poolable) {
            ((Poolable) result).getVerifier().setRecycled(false /*isRecycled*/);//标记不在对象池中
          }
          return result;
        }
    
        @Override
        public boolean release(@NonNull T instance) {
          if (instance instanceof Poolable) {
            ((Poolable) instance).getVerifier().setRecycled(true /*isRecycled*/);//标记在复用池中
          }
          resetter.reset(instance);//重置状态的相关操作
          return pool.release(instance);//复用池复用
        }
      }
    

    再对外提供工厂方法

    package com.bumptech.glide.util.pool;
    
    import android.util.Log;
    import androidx.annotation.NonNull;
    import androidx.core.util.Pools.Pool;
    import androidx.core.util.Pools.SimplePool;
    import androidx.core.util.Pools.SynchronizedPool;
    import java.util.ArrayList;
    import java.util.List;
    /**
     * Provides implementations of {@link Pool} never return {@code null}, log when new instances are
     * created, and that can use the {@link com.bumptech.glide.util.pool.FactoryPools.Poolable}
     * interface to ensure objects aren't used while inside the pool.
     */
    public final class FactoryPools {
      private static final String TAG = "FactoryPools";
      private static final int DEFAULT_POOL_SIZE = 20;
      private static final Resetter<Object> EMPTY_RESETTER =
          new Resetter<Object>() {
            @Override
            public void reset(@NonNull Object object) {
              // Do nothing.
            }
          };
    
      private FactoryPools() {}
    
      /**
       * Returns a non-thread safe {@link Pool} that never returns {@code null} from {@link
       * Pool#acquire()} and that contains objects of the type created by the given {@link Factory} with
       * the given maximum size.
       *
       * <p>If the pool is empty when {@link Pool#acquire()} is called, the given {@link Factory} will
       * be used to create a new instance.
       *  线程不安全
       * @param <T> The type of object the pool will contains.
       */
      @NonNull
      public static <T extends Poolable> Pool<T> simple(int size, @NonNull Factory<T> factory) {
        return build(new SimplePool<T>(size), factory);
      }
    
      /**
       * Returns a new thread safe {@link Pool} that never returns {@code null} from {@link
       * Pool#acquire()} and that contains objects of the type created by the given {@link Factory} with
       * the given maximum size.
       *
       * <p>If the pool is empty when {@link Pool#acquire()} is called, the given {@link Factory} will
       * be used to create a new instance.
       *线程安全
       * @param <T> The type of object the pool will contains.
       */
      @NonNull
      public static <T extends Poolable> Pool<T> threadSafe(int size, @NonNull Factory<T> factory) {
        return build(new SynchronizedPool<T>(size), factory);
      }
    
      /**
       * Returns a new {@link Pool} that never returns {@code null} and that contains {@link List Lists}
       * of a specific generic type with a standard maximum size of 20.
       *
       * <p>If the pool is empty when {@link Pool#acquire()} is called, a new {@link List} will be
       * created.
       *
       * @param <T> The type of object that the {@link List Lists} will contain.
       */
      @NonNull
      public static <T> Pool<List<T>> threadSafeList() {
        return threadSafeList(DEFAULT_POOL_SIZE);
      }
    
      /**
       * Returns a new thread safe {@link Pool} that never returns {@code null} and that contains {@link
       * List Lists} of a specific generic type with the given maximum size.
       *
       * <p>If the pool is empty when {@link Pool#acquire()} is called, a new {@link List} will be
       * created.
       *
       * @param <T> The type of object that the {@link List Lists} will contain.
       */
      // Public API.
      @SuppressWarnings("WeakerAccess")
      @NonNull
      public static <T> Pool<List<T>> threadSafeList(int size) {
        return build(
            new SynchronizedPool<List<T>>(size),
            new Factory<List<T>>() {
              @NonNull
              @Override
              public List<T> create() {
                return new ArrayList<>();
              }
            },
            new Resetter<List<T>>() {
              @Override
              public void reset(@NonNull List<T> object) {
                object.clear();
              }
            });
      }
    
      @NonNull
      private static <T extends Poolable> Pool<T> build(
          @NonNull Pool<T> pool, @NonNull Factory<T> factory) {
        return build(pool, factory, FactoryPools.<T>emptyResetter());
      }
    
      @NonNull
      private static <T> Pool<T> build(
          @NonNull Pool<T> pool, @NonNull Factory<T> factory, @NonNull Resetter<T> resetter) {
        return new FactoryPool<>(pool, factory, resetter);
      }
    
    }
    

    相信通过上面这一些列的流程,我们对对象池的设计和实现有了一个大体的了解,同时对设计模式,算法的复杂度,甚至后面的架构设计积累了灵感和素材,值得反复揣摩。

    相关文章

      网友评论

        本文标题:AndroidX的内置对象池

        本文链接:https://www.haomeiwen.com/subject/gqknbctx.html