美文网首页
0002-keras自定义层+模型保存后自定义层的加载

0002-keras自定义层+模型保存后自定义层的加载

作者: 小新学算法 | 来源:发表于2019-08-20 14:32 被阅读0次

    自定义Position层

    import keras
    from keras import backend as K
    import tensorflow as tf
    
    class Position_Embedding(keras.layers.Layer):    
        def __init__(self, size=None, mode='sum', **kwargs):
            self.size = size 
            self.mode = mode
            super(Position_Embedding, self).__init__(**kwargs)        
        def call(self, x):
            if (self.size == None) or (self.mode == 'sum'):
                self.size = int(x.shape[-1])
            position_j = 1. / K.pow(  10000., 2 * K.arange(self.size / 2, dtype='float32') / self.size  )
            position_j = K.expand_dims(position_j, 0)
            
            position_i = K.cumsum(K.ones_like(x[:,:,0]), 1)-1 
            position_i = K.expand_dims(position_i, 2)
            position_ij = K.dot(position_i, position_j)
            position_ij = K.concatenate([K.cos(position_ij), K.sin(position_ij)], 2)
            if self.mode == 'sum':
                return position_ij + x
            elif self.mode == 'concat':
                return K.concatenate([position_ij, x], 2)        
        def compute_output_shape(self, input_shape):
            if self.mode == 'sum':
                return input_shape
            elif self.mode == 'concat':
                return (input_shape[0], input_shape[1], input_shape[2]+self.size)
    

    定义Attention层

    class Attention(keras.layers.Layer):
        def __init__(self, nb_head, size_per_head, **kwargs):
            self.nb_head = nb_head
            self.size_per_head = size_per_head
            self.output_dim = nb_head*size_per_head
            super(Attention, self).__init__(**kwargs)
    
        def build(self, input_shape):
            self.WQ = self.add_weight(name='WQ',shape=(int(input_shape[0][-1]), self.output_dim),initializer='glorot_uniform',
                                      trainable=True)
            self.WK = self.add_weight(name='WK',shape=(int(input_shape[1][-1]), self.output_dim),initializer='glorot_uniform',
                                      trainable=True)
            self.WV = self.add_weight(name='WV',shape=(int(input_shape[2][-1]), self.output_dim),initializer='glorot_uniform',
                                      trainable=True)
            super(Attention, self).build(input_shape)
      
        def Mask(self, inputs, seq_len, mode='mul'):
            if seq_len == None:
                return inputs
            else:
                mask = K.one_hot(seq_len[:,0], K.shape(inputs)[1])
                mask = 1 - K.cumsum(mask, 1)
                for _ in range(len(inputs.shape)-2):
                    mask = K.expand_dims(mask, 2)
                if mode == 'mul':
                    return inputs * mask
                if mode == 'add':
                    return inputs - (1 - mask) * 1e12
                    
        def call(self, x):
            
            if len(x) == 3:
                Q_seq,K_seq,V_seq = x
                Q_len,V_len = None,None
            elif len(x) == 5:
                Q_seq,K_seq,V_seq,Q_len,V_len = x
                
            Q_seq = K.dot(Q_seq, self.WQ)
            Q_seq = K.reshape(Q_seq, (-1, K.shape(Q_seq)[1], self.nb_head, self.size_per_head))
            Q_seq = K.permute_dimensions(Q_seq, (0,2,1,3))
            
            K_seq = K.dot(K_seq, self.WK)
            K_seq = K.reshape(K_seq, (-1, K.shape(K_seq)[1], self.nb_head, self.size_per_head))
            K_seq = K.permute_dimensions(K_seq, (0,2,1,3))
            
            V_seq = K.dot(V_seq, self.WV)
            V_seq = K.reshape(V_seq, (-1, K.shape(V_seq)[1], self.nb_head, self.size_per_head))
            V_seq = K.permute_dimensions(V_seq, (0,2,1,3))
            
            A = K.batch_dot(Q_seq, K_seq, axes=[3,3]) / self.size_per_head**0.5
            A = K.permute_dimensions(A, (0,3,2,1))
            
            A = self.Mask(A, V_len, 'add')
            A = K.permute_dimensions(A, (0,3,2,1))    
            A = K.softmax(A)
            
            
            O_seq = K.batch_dot(A, V_seq, axes=[3,2])
            O_seq = K.permute_dimensions(O_seq, (0,2,1,3))
            O_seq = K.reshape(O_seq, (-1, K.shape(O_seq)[1], self.output_dim))
            O_seq = self.Mask(O_seq, Q_len, 'mul')
            
            return O_seq
            
        def compute_output_shape(self, input_shape):
            return (input_shape[0][0], input_shape[0][1], self.output_dim)     
        
        def get_config(self):        
            config = {"nb_head":self.nb_head,"size_per_head":self.size_per_head}
            base_config = super(Attention,self).get_config()
            return dict(list(base_config.items()) + list(config.items()))
    

    下面展示模型保存后自定义层的调用

    model = models.load_model("/data/user//model.h5",custom_objects={'Position_Embedding':Position_Embedding,"Attention":Attention})
    

    相关文章

      网友评论

          本文标题:0002-keras自定义层+模型保存后自定义层的加载

          本文链接:https://www.haomeiwen.com/subject/gqlpsctx.html