美文网首页
二、OpenCV+TensorFlow 入门人工智能图像几何变换

二、OpenCV+TensorFlow 入门人工智能图像几何变换

作者: LinJF | 来源:发表于2019-09-26 10:53 被阅读0次
    hua1.jpg

    OpenCV图片缩放

    方法一、

    # 1 load 2 info 3 resize 4 check
    import cv2
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow("hua1",img)
    imgInfo = img.shape
    print(imgInfo)
    height = imgInfo[0]
    width = imgInfo[1]
    mode = imgInfo[2]
    # 1 放大 缩小 2 同比缩放   等比例   非同比缩放   非等比例   2:3 
    dstHeight = int(height*0.5)
    dstWidth = int(width*0.5)
    #最近临域插值 双线性插值 像素关系重采样 立方插值
    dst = cv2.resize(img,(dstWidth,dstHeight))
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    
    #最近临域插值 双线性插值 原理
    # src 10*20 dst 5*10
    # dst<-src
    # (1,2) <- (2,4)
    # dst x 1 -> src x 2 newX
    # newX = x*(src 行/目标 行) newX = 1*(10/5) = 2
    # newY = y*(src 列/目标 列) newY = 2*(20/10)= 4
    # 12.3 = 12
    
    # 双线性插值
    # A1 = 20% 上+80%下 A2
    # B1 = 30% 左+70%右 B2
    # 1 最终点  = A1 30% + A2 70%
    # 2 最终点  = B1 20% + B2 80%
    
    #实质:矩阵运算 
    

    方法二、

    # 1 info 2 空白模版 3 xy
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    dstHeight = int(height/2)
    dstWidth = int(width/2)
    dstImage = np.zeros((dstHeight,dstWidth,3),np.uint8)#0-255 
    for i in range(0,dstHeight):#行
        for j in range(0,dstWidth):#列 
            iNew = int(i*(height*1.0/dstHeight))
            jNew = int(j*(width*1.0/dstWidth))
            dstImage[i,j] = img[iNew,jNew]
    cv2.imshow('hua',dstImage)
    cv2.waitKey(0)
    # 1 opencv API resize 2 算法原理 3 源码 
    

    方法三、

    #[[A1 A2 B1],[A3 A4 B2]]
    # [[A1 A2],[A3 A4]]  [[B1],[B2]]
    # newX = A1*x + A2*y+B1
    # newY = A3*x +A4*y+B2
    # x->x*0.5 y->y*0.5
    # newX = 0.5*x
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    matScale = np.float32([[0.5,0,0],[0,0.5,0]])
    dst = cv2.warpAffine(img,matScale,(int(width/2),int(height/2)))
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    图片剪切

    #100 -》200 x
    #100-》300 y
    import cv2
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    dst = img[100:200,100:300]
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    图片位移

    方法一、

    # 1 API 2 算法原理 3 源代码
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    ####
    matShift = np.float32([[1,0,100],[0,1,200]])# 2*3
    dst = cv2.warpAffine(img,matShift,(height,width))#1 data 2 mat 3 info
    # 移位 矩阵
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    
    # [1,0,100],[0,1,200] 2*2 2*1 
    # [[1,0],[0,1]]  2*2  A
    # [[100],[200]] 2*1   B
    # xy C
    # A*C+B = [[1*x+0*y],[0*x+1*y]]+[[100],[200]]
    # = [[x+100],[y+200]]
    
    #(10,20)->(110,120)
    

    方法二、

    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    dst = np.zeros(img.shape,np.uint8)
    height = imgInfo[0]
    width = imgInfo[1]
    for i in range(0,height):
        for j in range(0,width-100):
            dst[i,j+100]=img[i,j]
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    图片镜像

    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    deep = imgInfo[2]
    newImgInfo = (height*2,width,deep)
    dst = np.zeros(newImgInfo,np.uint8)#uint8 
    for i in range(0,height):
        for j in range(0,width):
            dst[i,j] = img[i,j]
            #x y = 2*h - y -1
            dst[height*2-i-1,j] = img[i,j]
    for i in range(0,width):
        dst[height,i] = (0,0,255)#BGR
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    仿射变换

    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    #src 3->dst 3 (左上角 左下角 右上角)
    matSrc = np.float32([[0,0],[0,height-1],[width-1,0]])
    matDst = np.float32([[50,50],[300,height-200],[width-300,100]])
    #组合
    matAffine = cv2.getAffineTransform(matSrc,matDst)# mat 1 src 2 dst
    dst = cv2.warpAffine(img,matAffine,(width,height))
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    图片旋转

    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    # 2*3 
    matRotate = cv2.getRotationMatrix2D((height*0.5,width*0.5),45,1)# mat rotate 1 center 2 angle 3 scale
    #100*100 25 
    dst = cv2.warpAffine(img,matRotate,(height,width))
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    相关文章

      网友评论

          本文标题:二、OpenCV+TensorFlow 入门人工智能图像几何变换

          本文链接:https://www.haomeiwen.com/subject/grjsyctx.html