美文网首页
iOS - cache_t分析

iOS - cache_t分析

作者: e521 | 来源:发表于2020-01-26 19:36 被阅读0次

    类的结构分析一文中提到过cache_t,但并未对其进行具体的分析,今天我们就一起看看iOS中的方法缓存在底层是如何实现的.

    cache_t结构体
    struct cache_t {
        struct bucket_t *_buckets;//结构体指针,缓存放在这里面
        mask_t _mask;//在64位下为uint32_t类型,代表总的可以缓存的方法数量
        mask_t _occupied;//当前已缓存的方法数量
    
    public://缓存的方法
        struct bucket_t *buckets();
        mask_t mask();
        mask_t occupied();
        void incrementOccupied();
        void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
        void initializeToEmpty();
    
        mask_t capacity();
        bool isConstantEmptyCache();
        bool canBeFreed();
    
        static size_t bytesForCapacity(uint32_t cap);
        static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);
    
        void expand();
        void reallocate(mask_t oldCapacity, mask_t newCapacity);
        struct bucket_t * find(cache_key_t key, id receiver);
    
        static void bad_cache(id receiver, SEL sel, Class isa) __attribute__((noreturn));
    };
    
    
    bucket_t
    struct bucket_t {
    private:
        // IMP-first is better for arm64e ptrauth and no worse for arm64.
        // SEL-first is better for armv7* and i386 and x86_64.
    #if __arm64__
        MethodCacheIMP _imp;
        cache_key_t _key;
    #else
        cache_key_t _key;
        MethodCacheIMP _imp;
    #endif
    
    public:
        inline cache_key_t key() const { return _key; }
        inline IMP imp() const { return (IMP)_imp; }
        inline void setKey(cache_key_t newKey) { _key = newKey; }
        inline void setImp(IMP newImp) { _imp = newImp; }
    
        void set(cache_key_t newKey, IMP newImp);
    };
    

    由bucket_t的结构可知:在arm64的环境下,存储的为_imp方法的实现和相应的_key.

    源码流程分析

    如果我们要找方法的缓存,那么我们就要先找到struct bucket_t *_buckets结构体指针,那么我们该如何寻找呢?接下来我们就一步步踏上寻找_buckets之旅.
    首先在cache_t的结构体中我们看到了 _mask,并且在缓存方法中我们看到一个mask()函数,查看mask()方法我们发现其只是返回了一个_mask,并未对_mask的值进行操作;

    mask_t cache_t::mask() 
    {
        return _mask; 
    }
    

    通过全局搜索mask()方法,我们发现在capacity()方法中调用了mask()方法,但具体作用并不知道;

    mask_t cache_t::capacity() 
    {
        return mask() ? mask()+1 : 0; 
    }
    

    继续对capacity()方法进行全局搜索,发现在expand()方法中调用了该方法:

    void cache_t::expand()
    {
        cacheUpdateLock.assertLocked();//断言
        
        uint32_t oldCapacity = capacity();//旧的容量,
        uint32_t newCapacity = oldCapacity ? oldCapacity*2 : INIT_CACHE_SIZE;//如果oldCapacity为0,此时就为INIT_CACHE_SIZE也就是4,如果不为0,则newCapacity为oldCapacity的两倍
    
        if ((uint32_t)(mask_t)newCapacity != newCapacity) {
            // mask overflow - can't grow further
            // fixme this wastes one bit of mask
            newCapacity = oldCapacity;
        }
    
        reallocate(oldCapacity, newCapacity);
    }
    
    enum {
        INIT_CACHE_SIZE_LOG2 = 2,
        INIT_CACHE_SIZE      = (1 << INIT_CACHE_SIZE_LOG2)//将1左移两位也就是4
    };
    

    只从字面意思我们看出: expand(扩容), capacity(容量),既然需要扩容,就肯定需要一定的条件,那么我们就看看在什么时候,开始进行扩容,通过搜索我们发现在cache_fill_nolock方法中调用了expand():

    static void cache_fill_nolock(Class cls, SEL sel, IMP imp, id receiver)
    {
        cacheUpdateLock.assertLocked();
    
        // Never cache before +initialize is done
        if (!cls->isInitialized()) return;
    
        // Make sure the entry wasn't added to the cache by some other thread 
        // before we grabbed the cacheUpdateLock.
        if (cache_getImp(cls, sel)) return;//从缓存中得到imp,如果拿到就直接返回,没有就继续走下面的方法
    
        cache_t *cache = getCache(cls);//获取缓存
        cache_key_t key = getKey(sel);//通过sel拿到相应的key,是一个哈希表
    
        // Use the cache as-is if it is less than 3/4 full
        mask_t newOccupied = cache->occupied() + 1;//创建一个newOccupied
        mask_t capacity = cache->capacity();
       //如果是空就直接创建
        if (cache->isConstantEmptyCache()) {
            // Cache is read-only. Replace it.
            cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
        }
        //判断是逗超出3/4临界点,如果超出就需要进行扩容操作
        else if (newOccupied <= capacity / 4 * 3) {
            // Cache is less than 3/4 full. Use it as-is.
        }
        else {
            //扩容到原来的两倍
            // Cache is too full. Expand it.
            cache->expand();
        }
    
        // Scan for the first unused slot and insert there.
        // There is guaranteed to be an empty slot because the 
        // minimum size is 4 and we resized at 3/4 full.
        bucket_t *bucket = cache->find(key, receiver);//通过key找到相应的bucket
        if (bucket->key() == 0) cache->incrementOccupied();
        bucket->set(key, imp);
    }
    

    由上面的分析我们可以看出如果cache为空则会调用reallocate()方法,如果容量大于3/4则需要进行扩容操作

    reallocate分析
    void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity)
    {
        bool freeOld = canBeFreed();//根据isConstantEmptyCache判断是否释放旧的缓存
    
        bucket_t *oldBuckets = buckets();//获取旧的buckets
        bucket_t *newBuckets = allocateBuckets(newCapacity);//创建新的buckets
    
        // Cache's old contents are not propagated. 
        // This is thought to save cache memory at the cost of extra cache fills.
        // fixme re-measure this
    
        assert(newCapacity > 0);
        assert((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
    
        setBucketsAndMask(newBuckets, newCapacity - 1);//将newCapacity-1作为参数传入setBucketsAndMask方法中进行赋值
        
        if (freeOld) {//清理旧缓存
            cache_collect_free(oldBuckets, oldCapacity);
            cache_collect(false);
        }
    }
    
    bool cache_t::canBeFreed()
    {
        return !isConstantEmptyCache();
    }
    
    setBucketsAndMask分析
    void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
    {
        // objc_msgSend uses mask and buckets with no locks.
        // It is safe for objc_msgSend to see new buckets but old mask.
        // (It will get a cache miss but not overrun the buckets' bounds).
        // It is unsafe for objc_msgSend to see old buckets and new mask.
        // Therefore we write new buckets, wait a lot, then write new mask.
        // objc_msgSend reads mask first, then buckets.
    
        // ensure other threads see buckets contents before buckets pointer
        mega_barrier();
    
        _buckets = newBuckets;
        
        // ensure other threads see new buckets before new mask
        mega_barrier();
        
        _mask = newMask;//由reallocate方法我们可以知道此时的_mask值实际上为新扩容后的容量减1 
        _occupied = 0;
    }
    

    由setBucketsAndMask源码可以看出:该方法实际就是对_buckets, _mask,_occupied进行赋值操作;

    find()
    bucket_t * cache_t::find(cache_key_t k, id receiver)
    {
        assert(k != 0);
    
        bucket_t *b = buckets();
        mask_t m = mask();
        // 通过cache_hash函数【begin  = k & m】计算出key值 k 对应的 index值 begin,用来记录查询起始索引
        mask_t begin = cache_hash(k, m);
        // begin 赋值给 i,用于切换索引
        mask_t i = begin;
        do {
            if (b[i].key() == 0  ||  b[i].key() == k) {
                //用这个i从散列表取值,如果取出来的bucket_t的 key = k,则查询成功,返回该bucket_t,
                //如果key = 0,说明在索引i的位置上还没有缓存过方法,同样需要返回该bucket_t,用于中止缓存查询。
                return &b[i];
            }
        } while ((i = cache_next(i, m)) != begin);
        
        // 这一步其实相当于 i = i-1,回到上面do循环里面,相当于查找散列表上一个单元格里面的元素,再次进行key值 k的比较,
        //当i=0时,也就i指向散列表最首个元素索引的时候重新将mask赋值给i,使其指向散列表最后一个元素,重新开始反向遍历散列表,
        //其实就相当于绕圈,把散列表头尾连起来,不就是一个圈嘛,从begin值开始,递减索引值,当走过一圈之后,必然会重新回到begin值,
        //如果此时还没有找到key对应的bucket_t,或者是空的bucket_t,则循环结束,说明查找失败,调用bad_cache方法。
     
        // hack
        Class cls = (Class)((uintptr_t)this - offsetof(objc_class, cache));
        cache_t::bad_cache(receiver, (SEL)k, cls);
    }
    

    至此,我们大致梳理出了cache_t的基本流程,其大致流程如下:


    cache_t流程图.jpg
    实例验证

    创建一个Student的类

    @interface Student : NSObject
    
    - (void)study;
    
    - (void)eat;
    
    - (void)play;
    
    @end
    

    只调用Student中的一个方法时:

    Student *student = [Student alloc];
            Class sClass = [Student class];
            [student study];
    

    通过LLDB进行调试

    (lldb) x/4gx sClass
    0x1000013c8: 0x001d8001000013a1 0x0000000100b36140
    0x1000013d8: 0x0000000101938eb0 0x0000000100000003
    (lldb) p (cache_t *)0x1000013d8//根据地址偏移拿到cache_t
    (cache_t *) $1 = 0x00000001000013d8
    (lldb) p *$1
    (cache_t) $2 = {
      _buckets = 0x0000000101938eb0
      _mask = 3//根据我们上面分析, 一开始oldCapacity为0, newCapacity则为4, _mask在赋值的等于newCapacity-1,因此_mask为3
      _occupied = 1 
    }
    (lldb) p $2._buckets
    (bucket_t *) $3 = 0x0000000101938eb0
    (lldb) p *$3
    (bucket_t) $4 = {
      _key = 4294971012
      _imp = 0x0000000100000dd0 (LGTest`-[Student study] at Student.m:12)
    }
    

    调用4个Student中的方法时:

            Student *student = [[Student alloc] init];
            Class sClass = [Student class];
            [student study];
            [student eat];
            [student play];
    

    通过LLDB进行调试

    (lldb) x/4gx sClass
    0x1000013e0: 0x001d8001000013b9 0x0000000100b36140
    0x1000013f0: 0x0000000100f5b810 0x0000000100000007
    (lldb) p (cache_t *)0x1000013f0
    (cache_t *) $1 = 0x00000001000013f0
    (lldb) p *$1
    (cache_t) $2 = {
      _buckets = 0x0000000100f5b810
      _mask = 7//由扩容我们可知此时3势必无法满足四个方法的缓存,需要扩容,我们知道oldCapacity上次为4, newCapacity则为8, _mask= newCapacity-1 = 7
      _occupied = 1//代表当前缓存一个
    }
    (lldb) p $2._buckets
    (bucket_t *) $3 = 0x0000000100f5b810
    (lldb) p *$3
    (bucket_t) $4 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    (lldb) p $2._buckets[0]
    (bucket_t) $5 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    (lldb) p $2._buckets[1]
    (bucket_t) $6 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    (lldb) p $2._buckets[2]
    (bucket_t) $7 = {
      _key = 140735178921514
      _imp = 0x0000000100000de0 (LGTest`-[Student play] at Student.m:20)
    }
    (lldb) p $2._buckets[3]
    (bucket_t) $8 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    (lldb) p $2._buckets[4]
    (bucket_t) $9 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    (lldb) p $2._buckets[5]
    (bucket_t) $10 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    (lldb) p $2._buckets[6]
    (bucket_t) $11 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    (lldb) p $2._buckets[7]
    (bucket_t) $12 = {
      _key = 0
      _imp = 0x0000000000000000
    }
    

    通过打印:我们发现当前的缓存方法只有最后一个调用的play方法,那么init, study, eat,哪去了呢?在reallocate方法中我们判断了freeOld,清理了旧的缓存,当4个方法的时候其实是调用了两次reallocate,第一次cache为空时调用了一次reallocate此时将_mask置为3,当明显4个方法_mask为3不够用,因此会调用扩容方法再次调用reallocate方法,将_mask缓存数量置为7,并清理旧的缓存,这也就是为什么当前缓存数量为1,且只存在play方法.

    总结:

    Class中的Cache主要是为了在消息发送的过程中,进行方法的缓存,加快调用效率,其中使用了动态扩容的方法,当容量达到最大值的3/4时,开始2倍扩容,扩容时会完全抹除旧的buckets,并且创建新的buckets代替,之后把最近一次临界的imp和key缓存进来.

    相关文章

      网友评论

          本文标题:iOS - cache_t分析

          本文链接:https://www.haomeiwen.com/subject/gsijthtx.html