本文转自互联网
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
喜欢的话麻烦点下Star哈
文章首发于我的个人博客:
本文是微信公众号【Java技术江湖】的《探索Redis设计与实现》其中一篇,本文部分内容来源于网络,为了把本文主题讲得清晰透彻,也整合了很多我认为不错的技术博客内容,引用其中了一些比较好的博客文章,如有侵权,请联系作者。
该系列博文会告诉你如何从入门到进阶,Redis基本的使用方法,Redis的基本数据结构,以及一些进阶的使用方法,同时也需要进一步了解Redis的底层数据结构,再接着,还会带来Redis主从复制、集群、分布式锁等方面的相关内容,以及作为缓存的一些使用方法和注意事项,以便让你更完整地了解整个Redis相关的技术体系,形成自己的知识框架。
如果对本系列文章有什么建议,或者是有什么疑问的话,也可以关注公众号【Java技术江湖】联系作者,欢迎你参与本系列博文的创作和修订。
这周开始学习 Redis,看看Redis是怎么实现的。所以会写一系列关于 Redis的文章。这篇文章关于 Redis 的基础数据。阅读这篇文章你可以了解:
- 动态字符串(SDS)
- 链表
- 字典
三个数据结构 Redis 是怎么实现的。
SDS
SDS (Simple Dynamic String)是 Redis 最基础的数据结构。直译过来就是”简单的动态字符串“。Redis 自己实现了一个动态的字符串,而不是直接使用了 C 语言中的字符串。
sds 的数据结构:
struct sdshdr {
// buf 中已占用空间的长度 int len;
// buf 中剩余可用空间的长度 int free;
// 数据空间
char buf[];
}
所以一个 SDS 的就如下图:
sds所以我们看到,sds 包含3个参数。buf 的长度 len,buf 的剩余长度,以及buf。
为什么这么设计呢?
-
可以直接获取字符串长度。
C 语言中,获取字符串的长度需要用指针遍历字符串,时间复杂度为 O(n),而 SDS 的长度,直接从len 获取复杂度为 O(1)。 -
杜绝缓冲区溢出。
由于C 语言不记录字符串长度,如果增加一个字符传的长度,如果没有注意就可能溢出,覆盖了紧挨着这个字符的数据。对于SDS 而言增加字符串长度需要验证 free的长度,如果free 不够就会扩容整个 buf,防止溢出。 -
减少修改字符串长度时造成的内存再次分配。
redis 作为高性能的内存数据库,需要较高的相应速度。字符串也很大概率的频繁修改。 SDS 通过未使用空间这个参数,将字符串的长度和底层buf的长度之间的额关系解除了。buf的长度也不是字符串的长度。基于这个分设计 SDS 实现了空间的预分配和惰性释放。- 预分配
如果对 SDS 修改后,如果 len 小于 1MB 那 len = 2 * len + 1byte。 这个 1 是用于保存空字节。
如果 SDS 修改后 len 大于 1MB 那么 len = 1MB + len + 1byte。 - 惰性释放
如果缩短 SDS 的字符串长度,redis并不是马上减少 SDS 所占内存。只是增加 free 的长度。同时向外提供 API 。真正需要释放的时候,才去重新缩小 SDS 所占的内存
- 预分配
-
二进制安全。
C 语言中的字符串是以 ”\0“ 作为字符串的结束标记。而 SDS 是使用 len 的长度来标记字符串的结束。所以SDS 可以存储字符串之外的任意二进制流。因为有可能有的二进制流在流中就包含了”\0“造成字符串提前结束。也就是说 SDS 不依赖 “\0” 作为结束的依据。 -
兼容C语言
SDS 按照惯例使用 ”\0“ 作为结尾的管理。部分普通C 语言的字符串 API 也可以使用。
链表
C语言中并没有链表这个数据结构所以 Redis 自己实现了一个。Redis 中的链表是:
typedef struct listNode {
// 前置节点 struct listNode *prev;
// 后置节点 struct listNode *next;
// 节点的值 void *value;} listNode;
非常典型的双向链表的数据结构。
同时为双向链表提供了如下操作的函数:
/* * 双端链表迭代器 */typedef struct listIter {
// 当前迭代到的节点 listNode *next;
// 迭代的方向 int direction;} listIter;
/* * 双端链表结构
*/typedef struct list {
// 表头节点 listNode *head;
// 表尾节点 listNode *tail;
// 节点值复制函数 void *(*dup)(void *ptr);
// 节点值释放函数 void (*free)(void *ptr);
// 节点值对比函数 int (*match)(void *ptr, void *key);
// 链表所包含的节点数量 unsigned long len;} list;
链表的结构比较简单,数据结构如下:
list总结一下性质:
- 双向链表,某个节点寻找上一个或者下一个节点时间复杂度 O(1)。
- list 记录了 head 和 tail,寻找 head 和 tail 的时间复杂度为 O(1)。
- 获取链表的长度 len 时间复杂度 O(1)。
字典
字典数据结构极其类似 java 中的 Hashmap。
Redis的字典由三个基础的数据结构组成。最底层的单位是哈希表节点。结构如下:
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
实际上哈希表节点就是一个单项列表的节点。保存了一下下一个节点的指针。 key 就是节点的键,v是这个节点的值。这个 v 既可以是一个指针,也可以是一个 uint64_t
或者 int64_t
整数。*next 指向下一个节点。
通过一个哈希表的数组把各个节点链接起来:
typedef struct dictht {
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
dictht
通过图示我们观察:
dictht.png实际上,如果对java 的基本数据结构了解的同学就会发现,这个数据结构和 java 中的 HashMap 是很类似的,就是数组加链表的结构。
字典的数据结构:
typedef struct dict {
// 类型特定函数
dictType *type;
// 私有数据
void *privdata;
// 哈希表
dictht ht[2];
// rehash 索引
// 当 rehash 不在进行时,值为 -1
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
// 目前正在运行的安全迭代器的数量
int iterators; /* number of iterators currently running */
} dict;
其中的dictType 是一组方法,代码如下:
<figure>
/*
* 字典类型特定函数
*/
typedef struct dictType {
// 计算哈希值的函数
unsigned int (*hashFunction)(const void *key);
// 复制键的函数
void *(*keyDup)(void *privdata, const void *key);
// 复制值的函数
void *(*valDup)(void *privdata, const void *obj);
// 对比键的函数
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
// 销毁键的函数
void (*keyDestructor)(void *privdata, void *key);
// 销毁值的函数
void (*valDestructor)(void *privdata, void *obj);
} dictType;
字典的数据结构如下图:
dict这里我们可以看到一个dict 拥有两个 dictht。一般来说只使用 ht[0],当扩容的时候发生了rehash的时候,ht[1]才会被使用。
当我们观察或者研究一个hash结构的时候偶我们首先要考虑的这个 dict 如何插入一个数据?
我们梳理一下插入数据的逻辑。
-
计算Key 的 hash 值。找到 hash 映射到 table 数组的位置。
-
如果数据已经有一个 key 存在了。那就意味着发生了 hash 碰撞。新加入的节点,就会作为链表的一个节点接到之前节点的 next 指针上。
-
如果 key 发生了多次碰撞,造成链表的长度越来越长。会使得字典的查询速度下降。为了维持正常的负载。Redis 会对 字典进行 rehash 操作。来增加 table 数组的长度。所以我们要着重了解一下 Redis 的 rehash。步骤如下:
- 根据ht[0] 的数据和操作的类型(扩大或缩小),分配 ht[1] 的大小。
- 将 ht[0] 的数据 rehash 到 ht[1] 上。
- rehash 完成以后,将ht[1] 设置为 ht[0],生成一个新的ht[1]备用。
-
渐进式的 rehash 。
其实如果字典的 key 数量很大,达到千万级以上,rehash 就会是一个相对较长的时间。所以为了字典能够在 rehash 的时候能够继续提供服务。Redis 提供了一个渐进式的 rehash 实现,rehash的步骤如下:- 分配 ht[1] 的空间,让字典同时持有 ht[1] 和 ht[0]。
- 在字典中维护一个 rehashidx,设置为 0 ,表示字典正在 rehash。
- 在rehash期间,每次对字典的操作除了进行指定的操作以外,都会根据 ht[0] 在 rehashidx 上对应的键值对 rehash 到 ht[1]上。
- 随着操作进行, ht[0] 的数据就会全部 rehash 到 ht[1] 。设置ht[0] 的 rehashidx 为 -1,渐进的 rehash 结束。
这样保证数据能够平滑的进行 rehash。防止 rehash 时间过久阻塞线程。
- 在进行 rehash 的过程中,如果进行了 delete 和 update 等操作,会在两个哈希表上进行。如果是 find 的话优先在ht[0] 上进行,如果没有找到,再去 ht[1] 中查找。如果是 insert 的话那就只会在 ht[1]中插入数据。这样就会保证了 ht[1] 的数据只增不减,ht[0]的数据只减不增。
网友评论