美文网首页
最快素数模板

最快素数模板

作者: 祭祀WO菛僾_3930 | 来源:发表于2016-12-28 22:08 被阅读0次

    ```

    #includeusing namespace std;

    typedef long long LL;

    const int N = 5e6 + 2;

    bool np[N];

    int prime[N], pi[N];

    int getprime() {

    int cnt = 0;

    np[0] = np[1] = true;

    pi[0] = pi[1] = 0;

    for(int i = 2; i < N; ++i) {

    if(!np[i]) prime[++cnt] = i;

    pi[i] = cnt;

    for(int j = 1; j <= cnt && i * prime[j] < N; ++j) {

    np[i * prime[j]] = true;

    if(i % prime[j] == 0)  break;

    }

    }

    return cnt;

    }

    const int M = 7;

    const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;

    int phi[PM + 1][M + 1], sz[M + 1];

    void init() {

    getprime();

    sz[0] = 1;

    for(int i = 0; i <= PM; ++i)  phi[i][0] = i;

    for(int i = 1; i <= M; ++i) {

    sz[i] = prime[i] * sz[i - 1];

    for(int j = 1; j <= PM; ++j) {

    phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];

    }

    }

    }

    int sqrt2(LL x) {

    LL r = (LL)sqrt(x - 0.1);

    while(r * r <= x)  ++r;

    return int(r - 1);

    }

    int sqrt3(LL x) {

    LL r = (LL)cbrt(x - 0.1);

    while(r * r * r <= x)  ++r;

    return int(r - 1);

    }

    LL getphi(LL x, int s) {

    if(s == 0)  return x;

    if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];

    if(x <= prime[s]*prime[s])  return pi[x] - s + 1;

    if(x <= prime[s]*prime[s]*prime[s] && x < N) {

    int s2x = pi[sqrt2(x)];

    LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;

    for(int i = s + 1; i <= s2x; ++i) {

    ans += pi[x / prime[i]];

    }

    return ans;

    }

    return getphi(x, s - 1) - getphi(x / prime[s], s - 1);

    }

    LL getpi(LL x) {

    if(x < N)  return pi[x];

    LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;

    for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) {

    ans -= getpi(x / prime[i]) - i + 1;

    }

    return ans;

    }

    LL lehmer_pi(LL x) {

    if(x < N)  return pi[x];

    int a = (int)lehmer_pi(sqrt2(sqrt2(x)));

    int b = (int)lehmer_pi(sqrt2(x));

    int c = (int)lehmer_pi(sqrt3(x));

    LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2;

    for (int i = a + 1; i <= b; i++) {

    LL w = x / prime[i];

    sum -= lehmer_pi(w);

    if (i > c) continue;

    LL lim = lehmer_pi(sqrt2(w));

    for (int j = i; j <= lim; j++) {

    sum -= lehmer_pi(w / prime[j]) - (j - 1);

    }

    }

    return sum;

    }

    int main() {

    ios::sync_with_stdio(false);

    init();

    LL n;

    while(~scanf("%lld", &n)) {

    printf("%lld\n", lehmer_pi(n));

    }

    return 0;

    }

    ```

    相关文章

      网友评论

          本文标题:最快素数模板

          本文链接:https://www.haomeiwen.com/subject/gtxgmttx.html