美文网首页
cnn网络实现

cnn网络实现

作者: 我要当大佬 | 来源:发表于2017-11-13 10:45 被阅读0次

    # -*- coding: utf-8 -*-

    """

    Created on Sun Nov 12 14:10:16 2017

    @author: jssyhhghf

    """

    # CNN

    import tensorflow as tf

    from tensorflow.examples.tutorials.mnist import input_data

    #载入数据集

    mnist = input_data.read_data_sets(r"E:\anaconda\tensorflow\tensor_mnist-master\MNIST_data",one_hot=True)

    #每个批次的大小

    batch_size = 100

    #计算一共有多少个批次

    n_batch=mnist.train.num_examples//batch_size

    #参数概要

    def variable_summaries(var):

    with tf.name_scope('summaries'):

    mean = tf.reduce_mean(var)

    tf.summary.scalar('mean',mean)#平均值

    with tf.name_scope('stdder'):

    stdder = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))

    tf.summary.scalar('stdder',stdder)        #标准差

    tf.summary.scalar('max',tf.reduce_max(var))#最大值

    tf.summary.scalar('min',tf.reduce_min(var))#最小值

    tf.summary.histogram('histogram',var)      #直方图

    #初始化权值

    def weight_variable(shape,name):

    initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布

    return tf.Variable(initial,name=name)

    #初始化偏置

    def bias_variable(shape,name):

    initial = tf.constant(0.1,shape=shape)

    return tf.Variable(initial,name=name)

    #卷积层

    def conv2d(x,W):

    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

    #x:tensor[batch,height,width,channels]

    #W:卷积核[height,width,inchannels.outchannels]

    #strides步长,第0和第3个都是1,1代表x方向的步长,2代表y方向的步长

    #池化层

    def max_pool_2x2(x):

    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

    with tf.name_scope('input'):

    x=tf.placeholder(tf.float32,[None,784])

    y=tf.placeholder(tf.float32,[None,10])

    with tf.name_scope('x_image'):

    #改变x的格式为4D向量

    x_image = tf.reshape(x,[-1,28,28,1])

    with tf.name_scope('Conv1'):

    #初始化第一个卷基层的权值和偏置

    with tf.name_scope('W_conv1'):

    W_conv1=weight_variable([5,5,1,32],name='W_conv1')#5*5的采样窗口,32个卷积核从一个平面抽取特征

    with tf.name_scope('b_conv1'):

    b_conv1=bias_variable([32],name='b_conv1')#每一个卷积核一个偏置值

    with tf.name_scope('conv2d_1'):

    #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数

    conv2d_1=conv2d(x_image,W_conv1)+b_conv1

    with tf.name_scope('relu'):

    h_conv1 = tf.nn.relu(conv2d_1)

    with tf.name_scope('h_pool1'):

    h_pool1 = max_pool_2x2(h_conv1)

    with tf.name_scope('Conv2'):

    with tf.name_scope('W_conv2'):

    #初始化第二个卷基层的权值和偏置

    W_conv2=weight_variable([5,5,32,64],name='W_conv2')#5*5的采样窗口,64个卷积核从32个平面抽取特征

    with tf.name_scope('b_conv2'):

    b_conv2=bias_variable([64],name='b_conv2')#每一个卷积核一个偏置值

    with tf.name_scope('conv2d_2'):

    conv2d_2=conv2d(h_pool1,W_conv2)+b_conv2

    #把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数

    with tf.name_scope('relu'):

    h_conv2 = tf.nn.relu(conv2d_2)

    with tf.name_scope('h_pool2'):

    h_pool2 = max_pool_2x2(h_conv2)

    #28*28的图片第一次卷积后还是28*28,第一次池化为14*14

    #第二次卷积后卫14*14,第二次池化为7*7

    #经过上面的操作得到64张7*7的平面

    with tf.name_scope('layer1'):

    #初始化第一个全连接层的权值

    with tf.name_scope('weight'):

    W_fc1 = weight_variable([7*7*64,1024],name='W_fc1')

    with tf.name_scope('bias'):

    b_fc1 = bias_variable([1024],name='b_fc1')

    with tf.name_scope('flat'):

    #把池化层2的输出扁平化为1维

    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64],name='h_pool')

    with tf.name_scope('relu'):

    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

    with tf.name_scope('keep_prob'):

    #keep_prob用来表示神经元的输出概率

    keep_prob = tf.placeholder(tf.float32,name='keep_prob')

    with tf.name_scope('h_fc1_drop'):

    h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob,name='h_fc1_drop')

    #初始化第二个全连接层

    with tf.name_scope('layer2'):

    with tf.name_scope('weight'):

    W_fc2 = weight_variable([1024,10],name='W_fc2')

    with tf.name_scope('bias'):

    b_fc2 = bias_variable([10],name='b_fc2')

    with tf.name_scope('softmax'):

    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

    with tf.name_scope('cross_entropy'):

    #交叉熵代价函数

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction),name='cross_entropy')

    tf.summary.scalar('cross_entropy',cross_entropy)

    with tf.name_scope('train'):

    #使用Adamoption进行优化

    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    with tf.name_scope('accuracy'):

    with tf.name_scope('correct_prediction'):

    correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))

    with tf.name_scope('accuracy'):

    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

    tf.summary.scalar('accuracy',accuracy)

    megred = tf.summary.merge_all()

    with tf.Session() as sess:

    sess.run(tf.global_variables_initializer())

    train_writer = tf.summary.FileWriter(r'E:\anaconda\tensorflow\logs\train',sess.graph)

    test_writer = tf.summary.FileWriter(r'E:\anaconda\tensorflow\logs\test',sess.graph)

    for i in range(1001):

    batch_xs,batch_ys = mnist.train.next_batch(batch_size)

    sess.run(train_step, feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5})

    summary=sess.run(megred,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})

    train_writer.add_summary(summary,i)

    batch_xs,batch_ys = mnist.test.next_batch(batch_size)

    summary=sess.run(megred,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})

    test_writer.add_summary(summary,i)

    if (i%100==0):

    test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})

    train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})

    print ('Iter'+str(i)+', Testing Accuracy='+str(test_acc)+',Training Accuracy='+str(train_acc))

    相关文章

      网友评论

          本文标题:cnn网络实现

          本文链接:https://www.haomeiwen.com/subject/gugamxtx.html