分布式应用开发,计算向数据移动
# 打成一个jar包,到数据上跑
[root@node001 ~]# hadoop jar MyWordCount.jar [com.hadoop.mr.MyWordCount](com.hadoop.mr.MyWordCount)
public class MyWordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(true);
// 创建1个作业
Job job = Job.getInstance(conf);
// 当前类的名字,导出jar包时用
job.setJarByClass(MyWordCount.class);
// 给作业起一个名字,在
job.setJobName("myWordCount");
// 设置输入输出路径
Path input = new Path("/user/root/test.txt");
FileInputFormat.addInputPath(job, input); // 不同的输入源
Path out = new Path("/data/wc/out");
if (out.getFileSystem(conf).exists(out)) {
out.getFileSystem(conf).delete(out, true);
}
FileOutputFormat.setOutputPath(job, out);
job.setMapperClass(MyMapper.class);
// 序列化反序列化,类型要一致,准备一个对象接收
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(MyReducer.class);
// 提交作业
job.waitForCompletion(true);
}
}
public class MyMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
// private Text word = new Text();
// key是行的偏移量
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
final String[] split = value.toString().split(" ");
for (String word : split) {
context.write(new Text(word), one);
}
// StringTokenizer itr = new StringTokenizer(value.toString());
// while (itr.hasMoreTokens()) {
// word.set(itr.nextToken());
// context.write(word, one);
// }
}
}
public class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
在eclipse 上也可直接运行!
只需3个类,其它什么都不用勾选
客户端作业提交源码分析
网友评论