美文网首页
人工智能每日论文速递[10.02]

人工智能每日论文速递[10.02]

作者: arXiv每日论文速递 | 来源:发表于2019-10-02 10:39 被阅读0次

    同步公众号(arXiv每日论文速递),欢迎关注,感谢支持哦~

    cs.AI 方向,今日共计40篇

    【1】 Emergent Systematic Generalization in a Situated Agent
    标题:情境Agent中的紧急系统泛化
    作者: Felix Hill, Adam Santoro
    链接:https://arxiv.org/abs/1910.00571

    【2】 Towards Improving Solution Dominance with Incomparability Conditions: A case-study using Generator Itemset Mining
    标题:在不可比性条件下提高解决方案优势:使用Generator Itemset Mining的案例研究
    作者: Gökberk Koçak, Ian Miguel
    链接:https://arxiv.org/abs/1910.00505

    【3】 Conjure Documentation, Release 2.3.0
    标题:召唤文档,版本2.3.0
    作者: Özgür Akgün
    链接:https://arxiv.org/abs/1910.00475

    【4】 Towards French Smart Building Code: Compliance Checking Based on Semantic Rules
    标题:走向法国智能建筑规范:基于语义规则的符合性检查
    作者: Nicolas Bus (CSTB), Muhammad Fahad (CSTB)
    链接:https://arxiv.org/abs/1910.00334

    【5】 A note on the empirical comparison of RBG and Ludii
    标题:关于RBG与Ludii实证比较的一点注记
    作者: Jakub Kowalski, Marek Szykuła
    链接:https://arxiv.org/abs/1910.00309

    【6】 Distance-Based Approaches to Repair Semantics in Ontology-based Data Access
    标题:基于距离的本体数据访问语义修复方法
    作者: César Prouté, Madalina Croitoru
    链接:https://arxiv.org/abs/1910.00293

    【7】 Identifying Supporting Facts for Multi-hop Question Answering with Document Graph Networks
    标题:基于文档图网络的多跳问题回答的支持事实识别
    作者: Mokanarangan Thayaparan, Andre Freitas
    链接:https://arxiv.org/abs/1910.00290

    【8】 MTab: Matching Tabular Data to Knowledge Graph using Probability Models
    标题:MTab:使用概率模型将表格数据匹配到知识图
    作者: Phuc Nguyen, Hideaki Takeda
    备注:SemTab 2019. MTab
    链接:https://arxiv.org/abs/1910.00246

    【9】 Reinforcement Learning for Multi-Objective Optimization of Online Decisions in High-Dimensional Systems
    标题:高维系统在线决策多目标优化的强化学习
    作者: Hardik Meisheri, Harshad Khadilkar
    链接:https://arxiv.org/abs/1910.00211

    【10】 SAT vs CSP: a commentary
    标题:SAT VS CSP:评论
    作者: Toby Walsh
    链接:https://arxiv.org/abs/1910.00128

    【11】 Multiagent Rollout Algorithms and Reinforcement Learning
    标题:多智能体展示算法与强化学习
    作者: Dimitri Bertsekas
    链接:https://arxiv.org/abs/1910.00120

    【12】 Mining Uncertain Event Data in Process Mining
    标题:过程挖掘中不确定事件数据的挖掘
    作者: Marco Pegoraro, Wil M.P. van der Aalst
    备注:18 pages, 7 figures, 3 tables
    链接:https://arxiv.org/abs/1910.00089

    【13】 Respect Your Emotion: Human-Multi-Robot Teaming based on Regret Decision Model
    标题:尊重你的情感:基于后悔决策模型的人-多机器人组队
    作者: Longsheng Jiang, Yue Wang
    链接:https://arxiv.org/abs/1910.00087

    【14】 Synthesizing Action Sequences for Modifying Model Decisions
    标题:用于修改模型决策的合成动作序列
    作者: Goutham Ramakrishnan, Aws Albargouthi
    链接:https://arxiv.org/abs/1910.00057

    【15】 Domain Expansion in DNN-based Acoustic Models for Robust Speech Recognition
    标题:用于鲁棒语音识别的基于DNN的声学模型中的域扩展
    作者: Shahram Ghorbani, John H.L. Hansen
    备注:Accepted at ASRU, 2019
    链接:https://arxiv.org/abs/1910.00565

    【16】 Manipulation Motion Taxonomy and Coding for Robots
    标题:机器人操纵运动分类与编码
    作者: David Paulius, Yu Sun
    备注:Accepted to IROS 2019 -- 6 pages
    链接:https://arxiv.org/abs/1910.00532

    【17】 Augmenting learning using symmetry in a biologically-inspired domain
    标题:在受生物启发的领域中使用对称性增强学习
    作者: Shruti Mishra, Doina Precup
    链接:https://arxiv.org/abs/1910.00528

    【18】 Learning Multi-Stage Sparsification for Maximum Clique Enumeration
    标题:学习最大团计数的多级稀疏化
    作者: Marco Grassia, Deepak Ajwani
    备注:Appeared at the Data Science Meets Optimization Workshop (DSO) at IJCAI'19
    链接:https://arxiv.org/abs/1910.00517

    【19】 Deep Neural Rejection against Adversarial Examples
    标题:针对对抗性实例的深层神经排斥
    作者: Angelo Sotgiu, Fabio Roli
    链接:https://arxiv.org/abs/1910.00470

    【20】 Compensating Supervision Incompleteness with Prior Knowledge in Semantic Image Interpretation
    标题:利用先验知识补偿语义图像解释中的监督不完全性
    作者: Ivan Donadello, Luciano Serafini
    链接:https://arxiv.org/abs/1910.00462

    【21】 MMM: Multi-stage Multi-task Learning for Multi-choice Reading Comprehension
    标题:MMM:多选择阅读理解的多阶段多任务学习
    作者: Di Jin, Dilek Hakkani-tur
    备注:Submitted to AAAI 2020, under review
    链接:https://arxiv.org/abs/1910.00458

    【22】 Global Voices: Crossing Borders in Automatic News Summarization
    标题:全球之声:在自动新闻摘要中跨越国界
    作者: Khanh Nguyen, Hal Daumé III
    备注:NewSum workshop at EMNLP 2019, 7 pages
    链接:https://arxiv.org/abs/1910.00421

    【23】 A Note On k-Means Probabilistic Poverty
    标题:关于k-表示概率贫困的一个注记
    作者: Mieczysław A. Kłopotek
    链接:https://arxiv.org/abs/1910.00413

    【24】 "Does 4-4-2 exist?" -- An Analytics Approach to Understand and Classify Football Team Formations in Single Match Situations
    标题:“存在4-4-2吗?” -一种分析方法来理解和分类单场比赛中的足球队编队
    作者: Eric Müller-Budack, Ralph Ewerth
    备注:Accepted at MMSports 2019 (Workshop of ACM Multimedia 2019)
    链接:https://arxiv.org/abs/1910.00412

    【25】 Decision Explanation and Feature Importance for Invertible Networks
    标题:可逆网络的决策解释和特征重要性
    作者: Juntang Zhuang, James S. Duncan
    链接:https://arxiv.org/abs/1910.00406

    【26】 Safe Reinforcement Learning on Autonomous Vehicles
    标题:自主车辆的安全强化学习
    作者: David Isele, Kikuo Fujimura
    链接:https://arxiv.org/abs/1910.00399

    【27】 Leveraging Model Interpretability and Stability to increase Model Robustness
    标题:利用模型的可解释性和稳定性提高模型的鲁棒性
    作者: Fei Wu, Alexandre Briot
    备注:Accepted at the 2019 ICCV workshop on Interpreting and Explaining Visual AI models; 8 pages
    链接:https://arxiv.org/abs/1910.00387

    【28】 Sub-Architecture Ensemble Pruning in Neural Architecture Search
    标题:神经结构搜索中的子结构集成剪枝
    作者: Yijun Bian, Xia Hu
    链接:https://arxiv.org/abs/1910.00370

    【29】 BioNLP-OST 2019 RDoC Tasks: Multi-grain Neural Relevance Ranking Using Topics and Attention Based Query-Document-Sentence Interactions
    标题:BioNLP-OST 2019 RDoC任务:使用主题和基于注意力的查询-文档-句子交互的多粒度神经相关性排序
    作者: Yatin Chaudhary, Hinrich Schütze
    备注:EMNLP2019, 10 pages, 2 figures, 7 tables
    链接:https://arxiv.org/abs/1910.00314

    【30】 Bad Form: Comparing Context-Based and Form-Based Few-Shot Learning in Distributional Semantic Models
    标题:不良形式:分布式语义模型中基于上下文和基于形式的少发学习的比较
    作者: Jeroen Van Hautte, Marek Rei
    备注:Accepted to the Proceedings of the Second Workshop on Deep Learning for Low-Resource NLP (DeepLo 2019)
    链接:https://arxiv.org/abs/1910.00275

    【31】 Underwhelming Generalization Improvements From Controlling Feature Attribution
    标题:通过控制要素属性进行平淡无奇的概化改进
    作者: Joseph D. Viviano, Joseph Paul Cohen
    链接:https://arxiv.org/abs/1910.00199

    【32】 Parallel Algorithm for Approximating Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning
    标题:多人随机对策中近似纳什均衡的并行算法及其在海军战略规划中的应用
    作者: Sam Ganzfried, Charles Morefield
    链接:https://arxiv.org/abs/1910.00193

    【33】 Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings
    标题:写作习惯和告密邻居:用子语言嵌入分析临床概念使用模式
    作者: Denis Newman-Griffis, Eric Fosler-Lussier
    备注:LOUHI 2019 (co-located with EMNLP)
    链接:https://arxiv.org/abs/1910.00192

    【34】 DenseRaC: Joint 3D Pose and Shape Estimation by Dense Render-and-Compare
    标题:DenseRaC:通过密集渲染和比较进行关节3D姿势和形状估计
    作者: Yuanlu Xu, Tony Tung
    备注:11 pages, 8 figures, International Conference on Computer Vision (ICCV) 2019, Oral Presentation
    链接:https://arxiv.org/abs/1910.00116

    【35】 Cross Domain Imitation Learning
    标题:跨域模仿学习
    作者: Kun Ho Kim, Stefano Ermon
    链接:https://arxiv.org/abs/1910.00105

    【36】 Risk-Aware Planning by Confidence Estimation using Deep Learning-Based Perception
    标题:基于深度学习感知的基于置信度估计的风险感知规划
    作者: Maymoonah Toubeh, Pratap Tokekar
    链接:https://arxiv.org/abs/1910.00101

    【37】 Deep Coordination Graphs
    标题:深度协调图
    作者: Wendelin Böhmer, Shimon Whiteson
    备注:Submitted to ICLR 2020
    链接:https://arxiv.org/abs/1910.00091

    【38】 Contextual Graph Attention for Answering Logical Queries over Incomplete Knowledge Graphs
    标题:在不完全知识图上回答逻辑查询时的上下文图注意
    作者: Gengchen Mai, Ni Lao
    备注:8 pages, 3 figures, camera ready version of article accepted to K-CAP 2019, Marina del Rey, California, United States
    链接:https://arxiv.org/abs/1910.00084

    【39】 Q-Search Trees: An Information-Theoretic Approach Towards Hierarchical Abstractions for Agents with Computational Limitations
    标题:Q-搜索树:一种用于具有计算限制的代理的分层抽象的信息论方法
    作者: Daniel T. Larsson, Panagiotis Tsiotras
    链接:https://arxiv.org/abs/1910.00063

    【40】 Tutorial on Implied Posterior Probability for SVMs
    标题:支持向量机隐含后验概率教程
    作者: Georgi Nalbantov, Svetoslav Ivanov
    备注:20 pages, 19 figures
    链接:https://arxiv.org/abs/1910.00062

    机器翻译,仅供参考

    相关文章

      网友评论

          本文标题:人工智能每日论文速递[10.02]

          本文链接:https://www.haomeiwen.com/subject/gvglpctx.html