主要分析了block在持有__block、__weak、__strong修饰的对象时,block结构发生的变化。
以及block对持有变量的引用计数造成的具体影响。
思考:
@implementation TestCode
- (void)testFunc {
@weakify(self)
self.block111 = ^{
@strongify(self);
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
if (self) {
printf("\n\nstrongPerson1 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
}else{
printf("self Retain Count = 0 \n");
}
});
};
}
- (void)dealloc {
printf("\n");
printf("✅ 【dealloc】 Retain Count = 0");
}
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
TestCode *t = [[TestCode alloc]init];
[t testFunc];
if (t.block111) {
t.block111();
}
}
@end
注意: 以下block111是self所持有的block
-
如果在
block111
中对NSMutableArray *arrayM
进行增删元素,arrayM
是否需要用__block
修饰? -
在
block111
中对weakSelf
进行__strong typeof(weakSelf) strongSelf = weakSelf
修饰- 如果
block
一直不调用,那么self
是否可以正常销毁? - 当运行到
__strong typeof(weakSelf) strongSelf = weakSelf
的下一行时,self
引用计数最少
是多少?
- 如果
一:基本介绍
定义
Block 是带有自动变量(局部变量)的匿名函数, 是 C
语言的扩充功能,其本质是一个OC
对象。
-
作为属性
@property (nonatomic,copy) void(^block)(void);
-
作为参数
- (void) getDataWithBlock:(id(^)(id parameter))block;
-
作为返回值(masonry)
- (MASConstraint * (^)(id))equalTo
结构
- (void)testFunc {
self.block111 = ^{
printf("block测试代码");
};
self.block111();
}
把OC
代码转成c++
代码
clang -x objective-c -rewrite-objc -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk -fobjc-arc -fobjc-runtime=macosx-10.13 xxxxxx.m
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
/// self.block = &__TestCode__testFunc_block_impl_0(A,B)
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)
((id)self, sel_registerName("setBlock111:"),
(
(void (*)())&__TestCode__testFunc_block_impl_0
(
(void *)__TestCode__testFunc_block_func_0,// 参数1
&__TestCode__testFunc_block_desc_0_DATA// 参数2__TestCode__testFunc_block_desc_0,
)
)
);
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block111"))();
}
上段代码的基本意思是
-
self.block = &__TestCode__testFunc_block_impl_0(A,B)
- A:
__TestCode__testFunc_block_func_0
- B:
__TestCode__testFunc_block_desc_0_DATA
- A:
1. __TestCode__testFunc_block_impl_0
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
__TestCode__testFunc_block_impl_0(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
命名规律:_类名_方法名_block_impl_层级
上述代码中可以看出block
被编译成了__TestCode__testFunc_block_impl_0
结构体
- 其内部有一个同名的构造函数
__TestCode__testFunc_block_impl_0
- 两个属性
-
__block_impl impl
-
__TestCode__testFunc_block_desc_0* Desc
-
2. __block_impl
struct __block_impl {
void *isa;// 指向了&_NSConcreteStackBlock
int Flags;
int Reserved;
void *FuncPtr; // 用于方法的储存本质是一个 __TestCode__testFunc_block_func_0 c函数
};
可以发现__block_impl结构体内部就有一个isa指针。因此可以证明block本质上就是一个oc对象。
__block_impl结构体中isa指针存储着&_NSConcreteStackBlock地址,可以暂时理解为其类对象地址,block就是_NSConcreteStackBlock类型的。
- 看到isa就会联想到之前在objc_class结构体,因此我们的block本质上也是一个对象【而且是个类对象】
我们知道实例对象->类对象->元类构成了isa链中的一条,而这个__block_impl结构体占据的是中间类对象的位置- 这里的isa指针会指向元类,这里的元类主要是为了说明这个块的存储区域
__TestCode__testFunc_block_func_0
static void __TestCode__testFunc_block_func_0(struct __TestCode__testFunc_block_impl_0 *__cself) {
printf("block测试代码");
}
__TestCode__testFunc_block_func_0
中存放的是block中的代码
3. __TestCode__testFunc_block_desc_0
static struct __TestCode__testFunc_block_desc_0 {
size_t reserved;
size_t Block_size;
} __TestCode__testFunc_block_desc_0_DATA = { 0, sizeof(struct __TestCode__testFunc_block_impl_0)};
主要是存储了block
的大小
4. 同名的构造函数__TestCode__testFunc_block_impl_0(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, int flags=0)
__TestCode__testFunc_block_impl_0
(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, int flags=0)
{
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
同名函数主要对两个属性进行了赋值
-
void *fp
就是(void *)__TestCode__testFunc_block_func_0__
-
__ struct __TestCode__testFunc_block_desc_0 *desc
就是&__TestCode__testFunc_block_desc_0_DATA
5. 结构图
image二:持有变量时block的结构
以上分析的是 block
不持有任何外部变量,但是当block
持有外部变量的时候,就会额外生成一些东西。
持有基本数据类型
持有的基本数据类型分为是否用__block
修饰,如下,a
用__block
修饰,b
没有。
- (void)testFunc {
__block NSInteger a = 0;
NSInteger b = 0;
self.block111 = ^{
a = 12 + b;
printf("block测试代码");
};
self.block111();
}
思考
a
用__block
修饰后可以修改,必然a
从值传递,变成了地址传递。
-
__blok
把a
封装成了什么结构? - 结构
a
的值到底存在哪里? - 结构
a
是怎么管理内存的?
要回答上述问题,我们需要查看- (void)testFunc{}
编译的源码:
编译后:
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
// 结构体 a 的生成 (__block NSInteger a = 0;)
__attribute__((__blocks__(byref))) __Block_byref_a_0 a =
{
(void*)0, // isa
(__Block_byref_a_0 *)&a,// a地址的传递
0,// flags
sizeof(__Block_byref_a_0),// size
0// a的值
};
NSInteger b = 0;
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)
((id)self, sel_registerName("setBlock111:"),
/// 初始化__TestCode__testFunc_block_impl_0结构体
((void (*)())&__TestCode__testFunc_block_impl_0
(
(void *)__TestCode__testFunc_block_func_0,
&__TestCode__testFunc_block_desc_0_DATA,
b,//值传递b
(__Block_byref_a_0 *)&a,//把结构体(对象)a的地址传了进去
570425344
))
);
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block111"))();
}
1. __Block_byref_a_0
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
NSInteger a;
};
// 结构体 a 的生成
__attribute__((__blocks__(byref))) __Block_byref_a_0 a =
{
(void*)0, // isa
(__Block_byref_a_0 *)&a,// a地址的传递
0,// flags
sizeof(__Block_byref_a_0),// size
0// a的值
};
- 用了
__block
修饰的a
,生成了一个用__attribute__ 修饰的__Block_byref_a_0
类型的结构体。 - 结构体内部有一个
isa
指针,说明__Block_byref_a_0
其本质也是一个OC
对象
2. __TestCode__testFunc_block_impl_0结构体
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
NSInteger b;
__Block_byref_a_0 *a; // by ref
// 同名的构造函数
__TestCode__testFunc_block_impl_0
(
void *fp,
struct __TestCode__testFunc_block_desc_0 *desc,
NSInteger _b,
__Block_byref_a_0 *_a,
int flags=0
) : b(_b), a(_a->__forwarding) { ... }
};
生成了新的属性:
-
NSInteger b
-
_b
就是栈区的b
-
b
值传递
-
-
__Block_byref_a_0 *a
-
由于赋值到
__TestCode__testFunc_block_impl_0
时,传递的是 栈区的__Block_byref_a_0 a
的地址,所以_a
==&a
。 -
因为
_a->__forwarding
就是&_a
因此__TestCode__testFunc_block_impl_0
结构体中的a
指向的就是栈中的a
-
小结论:
-
block
中的b
和外部的b
,只是值传递,因此即便外部修改了b
的值,也不会对block
的b
产生影响。 -
__block a;
把a
包装成了一个结构体,而block
内部属性__Block_byref_a_0 *a
就是栈区结构体a
的地址 - 此时,
block
没有copy
操作,所以block
存在栈区,结构体a
也存在栈区
3. __TestCode__testFunc_block_desc_0
static struct __TestCode__testFunc_block_desc_0 {
size_t reserved;
size_t Block_size;
//copy 函数
void (*copy)(
struct __TestCode__testFunc_block_impl_0*,
struct __TestCode__testFunc_block_impl_0*
);
// dispose 函数
void (*dispose)(struct __TestCode__testFunc_block_impl_0*);
} __TestCode__testFunc_block_desc_0_DATA =
{ 0,// reserved
sizeof(struct __TestCode__testFunc_block_impl_0), //size
__TestCode__testFunc_block_copy_0,//copy
__TestCode__testFunc_block_dispose_0//dispose
};
生成了 copy
dispose
函数
a. __TestCode__testFunc_block_copy_0
-
block
被拷贝到堆区的时候调用 -
实现函数是
_Block_object_assign
,它根据对象的flags
来判断是否需要拷贝,或者只是赋值。
// copy
static void __TestCode__testFunc_block_copy_0(struct __TestCode__testFunc_block_impl_0*dst, struct __TestCode__testFunc_block_impl_0*src){
_Block_object_assign(
(void*)&dst->a,
(void*)src->a,
8/*BLOCK_FIELD_IS_BYREF*/
);
}
_Block_object_assign
/**
_Block_object_assign参数flag相关
// 是一个对象
BLOCK_FIELD_IS_OBJECT = 3,
// 是一个block
BLOCK_FIELD_IS_BLOCK = 7,
// 被__block修饰的变量
BLOCK_FIELD_IS_BYREF = 8,
// 被__weak修饰的变量,只能被辅助copy函数使用
BLOCK_FIELD_IS_WEAK = 16,
// block辅助函数调用(告诉内部实现不要进行retain或者copy)
BLOCK_BYREF_CALLER = 128
**/
void _Block_object_assign(void *destAddr, const void *object, const int flags) {
// BLOCK_BYREF_CALLER block辅助函数调用(告诉内部实现不要进行retain或者copy)
if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) {
//BLOCK_FIELD_IS_WEAK 被__weak修饰的变量,只能被辅助copy函数使用
if ((flags & BLOCK_FIELD_IS_WEAK) == BLOCK_FIELD_IS_WEAK) {
_Block_assign_weak(object, destAddr);
}
else {
_Block_assign((void *)object, destAddr);
}
}
// 被__block修饰的变量
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) {
///最终走到这边
_Block_byref_assign_copy(destAddr, object, flags);
}
// 是一个block
else if ((flags & BLOCK_FIELD_IS_BLOCK) == BLOCK_FIELD_IS_BLOCK) {
_Block_assign(_Block_copy_internal(object, flags), destAddr);
}
// 是一个对象
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) {
_Block_retain_object(object);
_Block_assign((void *)object, destAddr);
}
}
/*
Block_private.h
https://opensource.apple.com/source/libclosure/libclosure-73/Block_private.h
*/
enum {
BLOCK_DEALLOCATING = (0x0001), // runtime
BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
BLOCK_NEEDS_FREE = (1 << 24), // runtime
BLOCK_HAS_COPY_DISPOSE = (1 << 25), // compiler
BLOCK_HAS_CTOR = (1 << 26), // compiler: helpers have C++ code
BLOCK_IS_GC = (1 << 27), // runtime
BLOCK_IS_GLOBAL = (1 << 28), // compiler
BLOCK_USE_STRET = (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
BLOCK_HAS_SIGNATURE = (1 << 30), // compiler
BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31) // compiler
};
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
int flags; /* refcount; */
int size;
};
/** runtime.c
http://llvm.org/svn/llvm-project/compiler-rt/trunk/lib/BlocksRuntime/runtime.c
*/
static void *_Block_copy_class = _NSConcreteMallocBlock;
static void *_Block_copy_finalizing_class = _NSConcreteMallocBlock;
static int _Block_copy_flag = BLOCK_NEEDS_FREE;
static int _Byref_flag_initial_value = BLOCK_NEEDS_FREE | 2;
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
struct Block_byref **destp = (struct Block_byref **)dest;
struct Block_byref *src = (struct Block_byref *)arg;
//不需要做任何操作
if (src->forwarding->flags & BLOCK_IS_GC) {
}
// 需要copy到堆区 并且需要操作引用计数
else if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
bool isWeak = ((flags & (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK)) == (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK));
// if its weak ask for an object (only matters under GC)
struct Block_byref *copy = (struct Block_byref *)_Block_allocator(src->size, false, isWeak);
copy->flags = src->flags | _Byref_flag_initial_value; // non-GC one for caller, one for stack
copy->forwarding = copy; // patch heap copy to point to itself (skip write-barrier)
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (isWeak) {
copy->isa = &_NSConcreteWeakBlockVariable; // mark isa field so it gets weak scanning
}
if (src->flags & BLOCK_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
copy->byref_keep = src->byref_keep;
copy->byref_destroy = src->byref_destroy;
(*src->byref_keep)(copy, src);
}
else {
// just bits. Blast 'em using _Block_memmove in case they're __strong
_Block_memmove(
(void *)©->byref_keep,
(void *)&src->byref_keep,
src->size - sizeof(struct Block_byref_header));
}
}
// 已经复制到堆、只操作引用计数
else if ((src->forwarding->flags & BLOCK_NEEDS_FREE) == BLOCK_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
// assign byref data block pointer into new Block
// 其实进行了 *destp = src->forwarding 操作,把栈区的a,变成了 Block_byref *copy
_Block_assign(src->forwarding, (void **)destp);
}
static void (*_Block_assign)(void *value, void **destptr) = _Block_assign_default;
static void _Block_assign_default(void *value, void **destptr) {
*destptr = value;
}
省略后的代码
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
int flags; /* refcount; */
int size;
};
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
...
struct Block_byref *copy = (struct Block_byref *)_Block_allocator(src->size, false, isWeak);
copy->flags = src->flags | _Byref_flag_initial_value; // non-GC one for caller, one for stack
// 堆中拷贝的forwarding指向它自己
copy->forwarding = copy; // patch heap copy to point to itself (skip write-barrier)
// 栈中的forwarding指向堆中的新对象
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
...
// 其实进行了 *destp = src->forwarding 操作,把栈区的a,变成了 Block_byref *copy
_Block_assign(src->forwarding, (void **)destp);
}
可以看到,Block_byref
和 __Block_byref_a_0
的前4
个成员类型相同,可以互相转化。
b. __TestCode__testFunc_block_dispose_0
// dispose
static void __TestCode__testFunc_block_dispose_0(struct __TestCode__testFunc_block_impl_0*src){
_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);
}
_Block_object_dispose
void _Block_object_dispose(const void *object, const int flags) {
//printf("_Block_object_dispose(%p, %x)\n", object, flags);
if (flags & BLOCK_FIELD_IS_BYREF) {
// 释放 __block 修饰的变量
_Block_byref_release(object);
}
else if ((flags & (BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_BLOCK) {
// 释放block 引用的 block
_Block_destroy(object);
}
else if ((flags & (BLOCK_FIELD_IS_WEAK|BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_OBJECT) {
// 释放block 引用的对象
_Block_release_object(object);
}
}
static void _Block_byref_release(const void *arg) {
struct Block_byref *shared_struct = (struct Block_byref *)arg;
int refcount;
shared_struct = shared_struct->forwarding;
if ((shared_struct->flags & BLOCK_NEEDS_FREE) == 0) {
return; // stack or GC or global
}
refcount = shared_struct->flags & BLOCK_REFCOUNT_MASK;
if (refcount <= 0) {
printf("_Block_byref_release: Block byref data structure at %p underflowed\n", arg);
}
else if ((latching_decr_int(&shared_struct->flags) & BLOCK_REFCOUNT_MASK) == 0) {
if (shared_struct->flags & BLOCK_HAS_COPY_DISPOSE) {
(*shared_struct->byref_destroy)(shared_struct);
}
_Block_deallocator((struct Block_layout *)shared_struct);
}
}
static void (*_Block_deallocator)(const void *) = (void (*)(const void *))free;
static int latching_decr_int(int *where) {
while (1) {
int old_value = *(volatile int *)where;
if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
return BLOCK_REFCOUNT_MASK;
}
if ((old_value & BLOCK_REFCOUNT_MASK) == 0) {
return 0;
}
if (OSAtomicCompareAndSwapInt(old_value, old_value-1, (volatile int *)where)) {
return old_value-1;
}
}
}
被__block
修饰的变量,释放时要用 latching_decr_int
函数减引用计数,直到计数为0
,就释放该对象;
而普通的对象、block
,就直接释放销毁。
小结:
-
生成了
copy
despose
函数。 -
copy
调用时机:- 当
block
进行copy
操作的时候就会自动调用__TestCode__testFunc_block_desc_0
内部的__TestCode__testFunc_block_copy_0
函数,__TestCode__testFunc_block_copy_0
函数内部会调用_Block_object_assign
函数。 -
_Block_object_assign
内部是根据传递的flags
类型来对a
进行copy
、retain
操作
- 当
-
despose
调用时机:- 当
block
从堆中移除时就会自动调用__TestCode__testFunc_block_desc_0
中__TestCode__testFunc_block_dispose_0
函数,__TestCode__testFunc_block_dispose_0
函数内部会调用_Block_object_dispose
函数。 -
_Block_object_dispose
会对a
做释放操作,类似于release
。
- 当
4. __TestCode__testFunc_block_func_0
__TestCode__testFunc_block_func_0
是__block_impl
结构体中存储的block
代码
static void __TestCode__testFunc_block_func_0(struct __TestCode__testFunc_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref
NSInteger b = __cself->b; // bound by copy
(a->__forwarding->a) = 12 + b;
printf("block测试代码");
}
__cself
就是我们定义的block
a->__forwarding
其实修改的就是我们堆区的(Block_byref) copy
(注意 在ARC下我们的block会自动copy)
下图在TestCode.m中自定义了结构体:
截屏2020-02-01下午4.30.11.pngstruct __Block_byref_a_0 { void *__isa; struct __Block_byref_a_0 *__forwarding; int __flags; int __size; NSInteger a; }; struct __block_impl { void *isa;// 指向了&_NSConcreteStackBlock int Flags; int Reserved; void *FuncPtr; // 用于方法的储存本质是一个 __TestCode__testFunc_block_func_0 c函数 }; struct __TestCode__testFunc_block_impl_0 { struct __block_impl impl; struct __TestCode__testFunc_block_desc_0* Desc; struct __Block_byref_a_0 *a; // by ref };
5. 结构图
__block NSInteger a = 0;
NSInteger b = 0;
self.block111 = ^{
a = 12 + b;
printf("block测试代码");
};
image
持有对象类型
对象类型的引用分为三种情况:
- 用
__block
修饰 - 用
__strong
修饰(@strongify) - 用
__weak
修饰 (@weakify)
⚠️注意下面的代码产生了循环引用,随后会做详细的分析
- (void)testFunc {
__weak typeof(self)weakSelf = self;
__block TestCode *blockSelf = weakSelf;
self.block111 = ^{
__strong typeof(weakSelf)strongSelf = weakSelf;
void(^block222)(void) = ^{
blockSelf = strongSelf;
printf("\nblock测试代码\n");
};
block222();
};
self.block111();
}
编译上述代码:
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
__attribute__((objc_ownership(weak))) typeof(self)weakSelf = self;
__attribute__((__blocks__(byref))) __Block_byref_blockSelf_0 blockSelf =
{
(void*)0,
(__Block_byref_blockSelf_0 *)&blockSelf,
33554432,
sizeof(__Block_byref_blockSelf_0),
__Block_byref_id_object_copy_131,
__Block_byref_id_object_dispose_131,
weakSelf
};
// 创建 __TestCode__testFunc_block_impl_1
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)((id)self, sel_registerName("setBlock111:"), ((void (*)())&__TestCode__testFunc_block_impl_1
(//参数:
(void *)__TestCode__testFunc_block_func_1,
&__TestCode__testFunc_block_desc_1_DATA,
weakSelf,
(__Block_byref_blockSelf_0 *)&blockSelf,
570425344)
));
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block111"))();
}
1. __Block_byref_blockSelf_0
struct __Block_byref_blockSelf_0 {
//【值为:0】[8个字节]
void *__isa;
//【值为&blockSelf】,[8个字节]
__Block_byref_blockSelf_0 *__forwarding;
int __flags;//【值为33554432】,[4个字节]
int __size;//【值为sizeof(__Block_byref_blockSelf_0)】,[4个字节]
//【__Block_byref_id_object_copy_131】[8个字节]
void (*__Block_byref_id_object_copy)(void*, void*);
//【__Block_byref_id_object_dispose_131】,[8个字节]
void (*__Block_byref_id_object_dispose)(void*);
TestCode *__strong blockSelf;//【weakSelf】[8个字节]
};
/// 共48个字节
self
使用__block
修饰后,blockPerson
被包装成了一个与__Block_byref_a_0
相似的结构体
只是比__Block_byref_a_0
多了两个函数:
-
__Block_byref_id_object_copy
值为__Block_byref_id_object_copy_131
-
__Block_byref_id_object_dispose
值为__Block_byref_id_object_dispose_131
⚠️值得注意的是blockSelf
用了__strong
修饰,因此产生了循环引用!需要改成__block typeof(weakSelf)blockSelf = weakSelf;
下面会有详细解释
__Block_byref_id_object_copy_131 与 __Block_byref_id_object_dispose_131
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * ) ((char)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
内部调用函数为
_Block_object_assign
dst
与src
就是blockSelf
即__Block_byref_blockSelf_0
结构体指针因
__Block_byref_blockSelf_0
共48个字节,所以(char*)dst + 40
与(char)src + 40
,找到的就是TestCode *__strong blockSelf
最后的
flags
传递的是131 = 3|128
即 :BLOCK_FIELD_IS_OBJECT
|BLOCK_FIELD_IS_CALLER
调用时机:block
执行copy
操作,后面会详细分析。
2. __TestCode__testFunc_block_impl_1
struct __TestCode__testFunc_block_impl_1 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_1* Desc;
TestCode *const __weak weakSelf;
__Block_byref_blockSelf_0 *blockSelf; // by ref
__TestCode__testFunc_block_impl_1(
void *fp,
struct __TestCode__testFunc_block_desc_1 *desc,
TestCode *const __weak _weakSelf,
__Block_byref_blockSelf_0 *_blockSelf,
int flags=0
) : weakSelf(_weakSelf), blockSelf(_blockSelf->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
生成了两个成员变量:Person *__weak weakPerson;
、__Block_byref_blockPerson_0 *blockPerson;
**a. __block_impl impl **
结构没有任何变化
-
flags
:570425344
表示BLOCK_HAS_COPY_DISPOSE | BLOCK_HAS_DESCRIPTOR
,即(1<<25 | 1<<29) -
FuncPtr
:__TestCode__testFunc_block_func_1
3. __TestCode__testFunc_block_desc_1
结构没有任何变化
desc
:结构体__TestCode__testFunc_block_desc_1_DATA
static struct __TestCode__testFunc_block_desc_1 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __TestCode__testFunc_block_impl_1*, struct __TestCode__testFunc_block_impl_1*);
void (*dispose)(struct __TestCode__testFunc_block_impl_1*);
} __TestCode__testFunc_block_desc_1_DATA = {
0,
sizeof(struct __TestCode__testFunc_block_impl_1),
__TestCode__testFunc_block_copy_1,
__TestCode__testFunc_block_dispose_1
};
值得注意的是:copy、dispose的实现函数
// copy 函数
static void __TestCode__testFunc_block_copy_1(struct __TestCode__testFunc_block_impl_1*dst, struct __TestCode__testFunc_block_impl_1*src)
{
_Block_object_assign((void*)&dst->weakSelf, (void*)src->weakSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);
_Block_object_assign((void*)&dst->blockSelf, (void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);
}
// dispose 函数
static void __TestCode__testFunc_block_dispose_1(struct __TestCode__testFunc_block_impl_1*src)
{
_Block_object_dispose((void*)src->weakSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);
_Block_object_dispose((void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);
}
a. 对weakSelf
的 _Block_object_assign
操作
void _Block_object_assign(void *destAddr, const void *object, const int flags) {
// BLOCK_BYREF_CALLER block辅助函数调用(告诉内部实现不要进行retain或者copy)
if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) { ... }
// 被__block修饰的变量
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) { ... }
// 是一个block
else if ((flags & BLOCK_FIELD_IS_BLOCK) == BLOCK_FIELD_IS_BLOCK) { ... }
// 是一个对象
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) {
_Block_retain_object(object);
_Block_assign((void *)object, destAddr);
}
}
即直接对对象进行一个_Block_retain_object
操作
但是发现在ARC下_Block_retain_object
函数并没有给对象的引用计数+1。
static void (*_Block_retain_object)(const void *ptr) = _Block_retain_object_default;
static void _Block_retain_object_default(const void *ptr) {
if (!ptr) return;
}
b. 对blockSelf
的_Block_object_assign
操作
最终会调用到_Block_byref_assign_copy
函数
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
struct Block_byref **destp = (struct Block_byref **)dest;
struct Block_byref *src = (struct Block_byref *)arg;
//不需要做任何操作
if (src->forwarding->flags & BLOCK_IS_GC) {
}
// 需要copy到堆区 并且需要操作引用计数
else if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
bool isWeak = ((flags & (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK)) == (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK));
struct Block_byref *copy = (struct Block_byref *)_Block_allocator(src->size, false, isWeak);
copy->flags = src->flags | _Byref_flag_initial_value;
copy->forwarding = copy;
src->forwarding = copy;
copy->size = src->size;
if (isWeak) {
copy->isa = &_NSConcreteWeakBlockVariable;
}
if (src->flags & BLOCK_HAS_COPY_DISPOSE) {
/// 调用 __Block_byref_blockSelf_0 中的 __Block_byref_id_object_copy 函数
/// 执行byref的byref_keep函数(即assign函数,只是会加上BLOCK_BYREF_CALLER标志),管理捕获的对象内存
copy->byref_keep = src->byref_keep;
copy->byref_destroy = src->byref_destroy;
(*src->byref_keep)(copy, src);
}
else { ... }
}
// 已经复制到堆、只操作引用计数
else if ((src->forwarding->flags & BLOCK_NEEDS_FREE) == BLOCK_NEEDS_FREE) { ... }
_Block_assign(src->forwarding, (void **)destp);
}
值得注意的是在Block_private.h找到了这个结构:
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
volatile int32_t flags; // contains ref count
uint32_t size;
};
struct Block_byref_2 {
// requires BLOCK_BYREF_HAS_COPY_DISPOSE
BlockByrefKeepFunction byref_keep;
BlockByrefDestroyFunction byref_destroy;
};
struct Block_byref_3 {
// requires BLOCK_BYREF_LAYOUT_EXTENDED
const char *layout;
};
其实byref_keep
就是blockSelf
中的__Block_byref_id_object_copy
也就是函数__Block_byref_id_object_copy_131
所以其调用为
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * ) ((char)src + 40), 131);
}
// 译为
static void __Block_byref_id_object_copy_131(__Block_byref_blockSelf_0 *dst, __Block_byref_blockSelf_0 *src) {
_Block_object_assign(
dst->blockSelf,
*(void * )(src->blockSelf),
BLOCK_FIELD_IS_OBJECT|BLOCK_FIELD_IS_CALLER
);
}
继续看_Block_object_assign
void _Block_object_assign(void *destAddr, const void *object, const int flags) {
// BLOCK_BYREF_CALLER block辅助函数调用(告诉内部实现不要进行retain或者copy)
if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) {
//BLOCK_FIELD_IS_WEAK 被__weak修饰的变量,只能被辅助copy函数使用
if ((flags & BLOCK_FIELD_IS_WEAK) == BLOCK_FIELD_IS_WEAK) {
_Block_assign_weak(object, destAddr);
}
else {
_Block_assign((void *)object, destAddr);
}
}
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) { ... }
else if ((flags & BLOCK_FIELD_IS_BLOCK) == BLOCK_FIELD_IS_BLOCK) { ... }
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) { ... }
}
static void (*_Block_assign)(void *value, void **destptr) = _Block_assign_default;
static void _Block_assign_default(void *value, void **destptr) {
*destptr = value;
}
运行了_Block_assign
函数,把栈区的__Block_byref_blockSelf_0 blockSelf
赋值成了Block_byref copy
c. 对weakSelf
的 dispose
操作
static void __TestCode__testFunc_block_dispose_1(struct __TestCode__testFunc_block_impl_1*src)
{
_Block_object_dispose(
(void*)src->self,
3/*BLOCK_FIELD_IS_OBJECT*/
);
_Block_object_dispose(
(void*)src->blockSelf,
8/*BLOCK_FIELD_IS_BYREF*/
);
}
void _Block_object_dispose(const void *object, const int flags) {
if (flags & BLOCK_FIELD_IS_BYREF) { ... }
else if ((flags & (BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_BLOCK) {...}
else if ((flags & (BLOCK_FIELD_IS_WEAK|BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_OBJECT) {
// 释放block 引用的对象
_Block_release_object(object);
}
}
static void (*_Block_release_object)(const void *ptr) = _Block_release_object_default;
static void _Block_release_object_default(const void *ptr) {
if (!ptr) return;
}
可以看到:最终会调用到_Block_release_object
,内部也是没对引用计数进行操作。
d. 对blockSelf
的 dispose
操作
其最终走到了_Block_byref_release
函数:
static void _Block_byref_release(const void *arg) {
struct Block_byref *shared_struct = (struct Block_byref *)arg;
int refcount;
shared_struct = shared_struct->forwarding;
if ((shared_struct->flags & BLOCK_NEEDS_FREE) == 0) {
return;
}
refcount = shared_struct->flags & BLOCK_REFCOUNT_MASK;
if (refcount <= 0) { }
else if ((latching_decr_int(&shared_struct->flags) & BLOCK_REFCOUNT_MASK) == 0) {
/// 主要调用了
if (shared_struct->flags & BLOCK_HAS_COPY_DISPOSE) {
(*shared_struct->byref_destroy)(shared_struct);
}
_Block_deallocator((struct Block_layout *)shared_struct);
}
}
其中__block_release
函数内部主要是调用了(*shared_struct->byref_destroy)(shared_struct)
也就是 __Block_byref_blockSelf_0 *blockSelf
中的__Block_byref_id_object_dispose_131
函数
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
///译为:
static void __Block_byref_id_object_dispose_131(__Block_byref_blockSelf_0 *src) {
_Block_object_dispose
(
*(void * *) (src->blockSelf),
BLOCK_FIELD_IS_OBJECT|BLOCK_FIELD_IS_CALLER
);
}
e. __TestCode__testFunc_block_func_1
查看__TestCode__testFunc_block_func_1
,函数中是如何创建第二层block222
的
{
__strong typeof(weakSelf)strongSelf = weakSelf;
void(^block222)(void) = ^{
blockSelf = strongSelf;
printf("\nblock测试代码\n");
};
block222();
}
static void __TestCode__testFunc_block_func_1(struct __TestCode__testFunc_block_impl_1 *__cself) {
__Block_byref_blockSelf_0 *blockSelf = __cself->blockSelf; // bound by ref
TestCode *const __weak weakSelf = __cself->weakSelf; // bound by copy
///__strong typeof(weakSelf)strongSelf = weakSelf;
__attribute__((objc_ownership(strong))) typeof(weakSelf)strongSelf = weakSelf;
/// 创建block222 即:__TestCode__testFunc_block_impl_0结构体
void(*block222)(void) = ((void (*)())&__TestCode__testFunc_block_impl_0((void *)__TestCode__testFunc_block_func_0,&__TestCode__testFunc_block_desc_0_DATA,strongSelf,(__Block_byref_blockSelf_0 *)blockSelf,570425344));
/// 调用: block222()
((void (*)(__block_impl *))((__block_impl *)block222)->FuncPtr)((__block_impl *)block222);
}
其中block222
是一个__TestCode__testFunc_block_impl_0
结构体
4. __TestCode__testFunc_block_impl_0
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
TestCode *const __strong strongSelf;
__Block_byref_blockSelf_0 *blockSelf; // by ref
__TestCode__testFunc_block_impl_0(
void *fp,
struct __TestCode__testFunc_block_desc_0 *desc,
TestCode *const __strong _strongSelf,
__Block_byref_blockSelf_0 *_blockSelf,
int flags=0
) : strongSelf(_strongSelf), blockSelf(_blockSelf->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
其结构和__TestCode__testFunc_block_impl_1
结构相似。
只不过blockSelf
就是上层block
(即:block111
)中的 blockSelf
值得注意的是这边有个TestCode *const __strong strongSelf;
剩下的结构与之前分析的结构大同小异:
static void __TestCode__testFunc_block_func_0(struct __TestCode__testFunc_block_impl_0 *__cself) {
__Block_byref_blockSelf_0 *blockSelf = __cself->blockSelf; // bound by ref
TestCode *const __strong strongSelf = __cself->strongSelf; // bound by copy
(blockSelf->__forwarding->blockSelf) = strongSelf;
printf("\nblock测试代码\n");
}
static void __TestCode__testFunc_block_copy_0(struct __TestCode__testFunc_block_impl_0*dst, struct __TestCode__testFunc_block_impl_0*src) {_Block_object_assign((void*)&dst->blockSelf, (void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_assign((void*)&dst->strongSelf, (void*)src->strongSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static void __TestCode__testFunc_block_dispose_0(struct __TestCode__testFunc_block_impl_0*src) {_Block_object_dispose((void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_dispose((void*)src->strongSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static struct __TestCode__testFunc_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __TestCode__testFunc_block_impl_0*, struct __TestCode__testFunc_block_impl_0*);
void (*dispose)(struct __TestCode__testFunc_block_impl_0*);
} __TestCode__testFunc_block_desc_0_DATA = { 0, sizeof(struct __TestCode__testFunc_block_impl_0), __TestCode__testFunc_block_copy_0, __TestCode__testFunc_block_dispose_0};
三:持有变量引用计数操作:
既然在ARC
下copy
、dispose
函数都没有对引用计数做修改,那么什么时候会对引用计数进行操作?
通过对持有变量的分析、可以总结出以下特点
1. 用__strong 与 __weak修饰
- (void)testFunc {
printf("\n Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__weak typeof (self)weakSelf1 = self;
printf("\n 【__weak typeof (self)weakSelf】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__weak TestCode *weakSelf2 = self;
printf("\n 【__weak TestCode *weakSelf2】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__strong typeof(self)strongSelf1 = self;
printf("\n 【__strong typeof(self)strongSelf1】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__strong TestCode *strongSelf2 = self;
printf("\n 【__strong TestCode *strongSelf2】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
self.block111 = ^{
[weakSelf1 class];
[weakSelf2 class];
[strongSelf1 class];
[strongSelf2 class];
};
}
/** log:
Retain Count = 1
【__weak typeof (self)weakSelf】 Retain Count = 1
【__weak TestCode *weakSelf2】 Retain Count = 1
【__strong typeof(self)strongSelf1】 Retain Count = 2
【__strong TestCode *strongSelf2】 Retain Count = 3
*/
编译后的代码:
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
printf("...");
__attribute__((objc_ownership(weak))) typeof (self)weakSelf1 = self;
__attribute__((objc_ownership(weak))) TestCode *weakSelf2 = self;
__attribute__((objc_ownership(strong))) typeof(self)strongSelf1 = self;
__attribute__((objc_ownership(strong))) TestCode *strongSelf2 = self;
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)((id)self, sel_registerName("setBlock111:"), ((void (*)())&__TestCode__testFunc_block_impl_0((void *)__TestCode__testFunc_block_func_0, &__TestCode__testFunc_block_desc_0_DATA, strongSelf1, strongSelf2, 570425344)));
}
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
TestCode *const __weak weakSelf1;
TestCode *__weak weakSelf2;
__strong typeof (self) strongSelf1;
TestCode *__strong strongSelf2;
// 同名构造函数
__TestCode__testFunc_block_impl_0(...){ ... }
};
-
__weak
__weak TestCode *weakSelf1 = self
与__weak typeof(self)weakSelf2 = self
最终都调用了
__attribute__((objc_ownership(weak)))
而且
__TestCode__testFunc_block_impl_0
中对weakSelf1
和weakSelf2
都是弱引用 -
__strong
__strong typeof(self)strongSelf1 = self
与__strong TestCode *strongSelf2 = self
最终都调用了
__attribute__((objc_ownership(strong)))
而且
__TestCode__testFunc_block_impl_0
中对strongSelf1
和strongSelf2
都是强引用
2. 用__block
修饰的对象
用__block
修饰的对象分成两种写法
__block TestCode *blockSelf = weakSelf
__block typeof(weakSelf)blockSelf2 = weakSelf
- (void)testFunc {
printf("\n Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__weak typeof(self)weakSelf = self;
__block TestCode *blockSelf1 = weakSelf;
printf("\n 【__block TestCode *blockSelf1 = weakSelf】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__block typeof(weakSelf)blockSelf2 = weakSelf;
printf("\n 【__block typeof(weakSelf)blockSelf2 = weakSelf】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
self.block111 = ^{
[blockSelf1 class];
[blockSelf2 class];
};
}
/**log:
Retain Count = 1
【__block TestCode *blockSelf1 = weakSelf】 Retain Count = 2
【__block typeof(weakSelf)blockSelf2 = weakSelf】 Retain Count = 2
*/
编译上述代码:
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
__Block_byref_blockSelf1_0 *blockSelf1; // by ref
__Block_byref_blockSelf2_1 *blockSelf2; // by ref
// 同名构造函数
__TestCode__testFunc_block_impl_0(...) { ... }
};
struct __Block_byref_blockSelf1_0 {
void *__isa;
__Block_byref_blockSelf1_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
TestCode *__strong blockSelf1;
};
struct __Block_byref_blockSelf2_1 {
void *__isa;
__Block_byref_blockSelf2_1 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
typeof (weakSelf) blockSelf2;
};
在__TestCode__testFunc_block_impl_0
中生成了两个成员变量
-
__block TestCode *blockSelf = weakSelf
TestCode *__strong blockSelf1;
对self
进行了强引用,从而self
引用计数+1,从而产生循环引用。 -
__block typeof(weakSelf)blockSelf2 = weakSelf;
typeof (weakSelf) blockSelf2
对self
的引用为弱引用,引用计数没有+1操作。
3. 补充:
- 在当前作用域中,对
self
的retainCount
加1,退出作用域后减一__block typeof(self)blockSelf = self;
__block NSObject *blockSelf = self;
__strong typeof (self)strongSelf = self;
__strong NSObject *strongSelf = self;
- 对
self
的retainCount
不作操作__weak typeof(self)weakSelf = self;
__weak NSObject *weakSelf = self;
注意 :
用这些修饰语句对对象的引用计数只在当前作用域有效。让block
产生循环引用的关键在于
__TestCode__testFunc_block_impl_0
block结构体中对对象是否是强引用。
思考答案
@implementation TestCode
- (void)testFunc {
@weakify(self)
self.block111 = ^{
@strongify(self);
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
if (self) {
printf("\n\nstrongPerson1 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
}else{
printf("self Retain Count = 0 \n");
}
});
};
}
- (void)dealloc {
printf("\n");
printf("✅ 【dealloc】 Retain Count = 0");
}
@end
编译后代码:
/// block111结构体
struct __TestCode__testFunc_block_impl_1 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_1* Desc;
TestCode *const __weak self_weak_;// 若引用
__TestCode__testFunc_block_impl_1(void *fp, struct __TestCode__testFunc_block_desc_1 *desc, TestCode *const __weak _self_weak_, int flags=0) : self_weak_(_self_weak_) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
///block111中储存的代码
static void __TestCode__testFunc_block_func_1(struct __TestCode__testFunc_block_impl_1 *__cself) {
TestCode *const __weak self_weak_ = __cself->self_weak_; // bound by copy
try {} catch (...) {}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshadow"
__attribute__((objc_ownership(strong))) __typeof__(self) self = self_weak_;
#pragma clang diagnostic pop
;
dispatch_after(dispatch_time((0ull), (int64_t)(2.0 * 1000000000ull)), dispatch_get_main_queue(), ((void (*)())&__TestCode__testFunc_block_impl_0((void *)__TestCode__testFunc_block_func_0, &__TestCode__testFunc_block_desc_0_DATA, self, 570425344)));
}
/// block222结构体
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
__strong typeof (self) self;/// 强引用
__TestCode__testFunc_block_impl_0(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, __strong typeof (self) _self, int flags=0) : self(_self) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
注意:以下block111是self所持有的block
-
如果在
block111
中对NSMutableArray *arrayM
进行增删元素,arrayM
是否需要用__block
修饰?答:不需要,因为并没有修改
arrayM
指针所指向的地址
-
在
block111
中对weakSelf
进行__strong typeof(weakSelf) strongSelf = weakSelf
修饰-
如果
block
一直不调用,那么self
是否可以正常销毁?答:可以销毁
因为
block
调用的时候,才会创建__TestCode__testFunc_block_impl_0
使得
__TestCode__testFunc_block_impl_0
内部对self
进行了强引用从而只要
__TestCode__testFunc_block_impl_0
不销毁,self
就无法销毁 -
当运行到
__strong typeof(weakSelf) strongSelf = weakSelf
的下一行时,self
引用计数最少
是多少?答:最少是2
但是出了
__strong typeof(weakSelf) strongSelf = weakSelf
的作用域,self
的引用计数就会自动减1
-
参考文章
- 探索 Block 的本质
- iOS底层原理总结 - 探寻block的本质(一)
- iOS底层原理总结 - 探寻block的本质(二)
- iOS Block Part6:block拷贝的实现
- OS - Block底层解析
- 一篇文章剖析block底层源码以及Block.private
- Block_private.h
- runtime.c
如果有不对的地方欢迎来喷~
网友评论