美文网首页
动手学习RAG:迟交互重排模型colbert微调实践 bge-m

动手学习RAG:迟交互重排模型colbert微调实践 bge-m

作者: YueTan | 来源:发表于2024-09-11 14:36 被阅读0次
  • 动手学习RAG: 向量模型
  • 动手学习RAG: BGE向量模型微调实践]()
  • 动手学习RAG: BCEmbedding 向量模型 微调实践]()
  • BCE ranking 微调实践]()
  • GTE向量与排序模型 微调实践]()
  • 模型微调中的模型序列长度]()

本文我们来进行ColBERT模型的实践,按惯例,还是以open-retrievals中的代码为蓝本。在RAG兴起之后,ColBERT也获得了更多的关注。ColBERT整体结构和双塔特别相似,但迟交互式也就意味着比起一般ranking模型,交互来的更晚一些。

Screen Shot 2024-09-12 at 19.07.51.png

本文代码:https://colab.research.google.com/drive/1QVtqhQ080ZMltXoJyODMmvEQYI6oo5kO?usp=sharing

准备环境

pip install transformers
pip install open-retrievals

准备数据

还是采用C-MTEB/T2Reranking数据。

  • 每个样本有query, positive, negative。其中query和positive构成正样本对,query和negative构成负样本对
    [图片上传失败...(image-583d0-1726122973759)]

使用

由于ColBERT作为迟交互式模型,既可以像向量模型一样生成向量,也可以计算相似度。BAAI/bge-m3中的colbert模型是基于XLMRoberta训练而来,因此使用ColBERT可以直接从bge-m3中加载预训练权重。

import transformers
from retrievals import ColBERT
model_name_or_path: str =  'BAAI/bge-m3' 
model = ColBERT.from_pretrained(
    model_name_or_path,
    colbert_dim=1024,    
    use_fp16=True,
    loss_fn=ColbertLoss(use_inbatch_negative=True),
)

model

[图片上传失败...(image-54e0cd-1726122973759)]

  • 生成向量的方法
sentences_1 = ["In 1974, I won the championship in Southeast Asia in my first kickboxing match", "In 1982, I defeated the heavy hitter Ryu Long."]
sentences_2 = ['A dog is chasing car.', 'A man is playing a guitar.']

output_1 = model.encode(sentences_1, normalize_embeddings=True)
print(output_1.shape, output_1)

output_2 = model.encode(sentences_2, normalize_embeddings=True)
print(output_2.shape, output_2)

[图片上传失败...(image-18c91a-1726122973759)]

  • 计算句子对 相似度的方法
sentences = [
    ["In 1974, I won the championship in Southeast Asia in my first kickboxing match", "In 1982, I defeated the heavy hitter Ryu Long."],
    ["In 1974, I won the championship in Southeast Asia in my first kickboxing match", 'A man is playing a guitar.'],
]

scores_list = model.compute_score(sentences)
print(scores_list)

[图片上传失败...(image-d2a27b-1726122973759)]

微调

尝试了两种方法来做,一种是调包自己写代码,一种是采用open-retrievals中的代码写shell脚本。这里我们采用第一种,另外一种方法可参考文章最后番外中的微调

import transformers
from transformers import AutoTokenizer, TrainingArguments, get_cosine_schedule_with_warmup, AdamW
from retrievals import AutoModelForRanking, RerankCollator, RerankTrainDataset, RerankTrainer, ColBERT, RetrievalTrainDataset, ColBertCollator
from retrievals.losses import ColbertLoss
transformers.logging.set_verbosity_error()


model_name_or_path: str = 'BAAI/bge-m3'

learning_rate: float = 1e-5
batch_size: int = 2
epochs: int = 1
output_dir: str = './checkpoints'

train_dataset = RetrievalTrainDataset(
    'C-MTEB/T2Reranking', positive_key='positive', negative_key='negative', dataset_split='dev'
)


tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)

data_collator = ColBertCollator(
    tokenizer,
    query_max_length=64,
    document_max_length=128,
    positive_key='positive',
    negative_key='negative',
)
model = ColBERT.from_pretrained(
    model_name_or_path,
    colbert_dim=1024,
    loss_fn=ColbertLoss(use_inbatch_negative=False),
)

optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)

training_args = TrainingArguments(
    learning_rate=learning_rate,
    per_device_train_batch_size=batch_size,
    num_train_epochs=epochs,
    output_dir = './checkpoints',
    remove_unused_columns=False,
    gradient_accumulation_steps=8,
    logging_steps=100,

)
trainer = RerankTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()

model.save_pretrained(output_dir)

训练过程中会加载BAAI/bge-m3模型权重
[图片上传失败...(image-6ac845-1726122973759)]
损失函数下降

{'loss': 7.4858, 'grad_norm': 30.484981536865234, 'learning_rate': 4.076305220883534e-06, 'epoch': 0.6024096385542169}
{'loss': 1.18, 'grad_norm': 28.68316650390625, 'learning_rate': 3.072289156626506e-06, 'epoch': 1.2048192771084336}
{'loss': 1.1399, 'grad_norm': 14.203865051269531, 'learning_rate': 2.068273092369478e-06, 'epoch': 1.8072289156626506}
{'loss': 1.1261, 'grad_norm': 24.30337905883789, 'learning_rate': 1.0642570281124499e-06, 'epoch': 2.4096385542168672}
{'train_runtime': 465.7768, 'train_samples_per_second': 34.265, 'train_steps_per_second': 1.069, 'train_loss': 2.4146631079984, 'epoch': 3.0}

评测

在C-MTEB中进行评测。微调前保留10%的数据集作为测试集验证

from datasets import load_dataset

dataset = load_dataset("C-MTEB/T2Reranking", split="dev")
ds = dataset.train_test_split(test_size=0.1, seed=42)

ds_train = ds["train"].filter(
    lambda x: len(x["positive"]) > 0 and len(x["negative"]) > 0
)

ds_train.to_json("t2_ranking.jsonl", force_ascii=False)

微调前的指标:
[图片上传失败...(image-5307ee-1726122973759)]

微调后的指标:

09/12/2024 15:30:26 - INFO - mteb.evaluation.MTEB -   Evaluation for CustomReranking on test took 221.45 seconds
09/12/2024 15:30:26 - INFO - mteb.evaluation.MTEB -   Scores: {'map': 0.6950128151840831, 'mrr': 0.8193114944390455, 'evaluation_time': 221.45}

番外:从语言模型直接训练ColBERT

之前的例子里是从BAAI/bge-m3继续微调,这里再跑一个从hfl/chinese-roberta-wwm-ext训练一个ColBERT模型

MODEL_NAME='hfl/chinese-roberta-wwm-ext'
TRAIN_DATA="/root/kaggle101/src/open-retrievals/t2/t2_ranking.jsonl"
OUTPUT_DIR="/root/kaggle101/src/open-retrievals/t2/ft_out"

cd /root/open-retrievals/src

torchrun --nproc_per_node 1 \
  --module retrievals.pipelines.rerank \
  --output_dir $OUTPUT_DIR \
  --overwrite_output_dir \
  --model_name_or_path $MODEL_NAME \
  --tokenizer_name $MODEL_NAME \
  --model_type colbert \
  --do_train \
  --data_name_or_path $TRAIN_DATA \
  --positive_key positive \
  --negative_key negative \
  --learning_rate 5e-5 \
  --bf16 \
  --num_train_epochs 5 \
  --per_device_train_batch_size 32 \
  --dataloader_drop_last True \
  --query_max_length 128 \
  --max_length 256 \
  --train_group_size 4 \
  --unfold_each_positive false \
  --save_total_limit 1 \
  --logging_steps 100 \
  --use_inbatch_negative False

相关文章

  • 学习方法

    有个测试学习风格的分类模型叫做VARK,这个分类模型把学习风格分为四种:视觉、听觉、读写和动手实践。那么这...

  • 微调模型

  • BERT 详解(五)

    Fine-tuning 微调 微调阶段根据不同任务使用不同网络模型。在微调阶段,大部分模型的超参数跟预训练时差不多...

  • java内存模型

    《深入理解java内存模型》-笔记 java各线程共享使用主内存,通过共享内存通信 重排序重排序.png编译器重排...

  • Caffe学习笔记7:模型微调

    一般来说我们通常都是需要在一些特定的领域里来识别分类,比如服装类、标志等等,但是深度学习中数据集的准备一直是最令人...

  • BERT微调模型

    使用BERT和Pytorch构建BERT微调模型,当然这里使用Pytorch的原因是用来比赛是比较方便的。 部分代...

  • 模型47:高手学习模型

    【模型名称】 高手学习模型 【模型说明】 学习是通过与外界交互,进而提升自己能力的过程。 具有很高能力水平的学习者...

  • 一个过程完整的机器学习项目

    基本步骤 纵览全局 获取数据 数据可视化、找规律 准备用于机器学习算法的数据 选择模型并进行训练 模型微调 展示解...

  • 面向产业的深度学习代码结构

    描述任务,即任务简介和基础知识 搭建开发环境 准备数据,导入并完成数据增强 加载预训练模型 迁移学习并微调模型 预...

  • 第三章 Java内存模型之顺序一致性⑤

    接上一章Java内存模型之重排序,我们来了解下顺序一致性。 学习完重排序之后,顺序一致性这个概念,也就很好懂了。 ...

网友评论

      本文标题:动手学习RAG:迟交互重排模型colbert微调实践 bge-m

      本文链接:https://www.haomeiwen.com/subject/gwrpljtx.html