美文网首页
Android面试Android进阶(十四)-Bitmap相关问

Android面试Android进阶(十四)-Bitmap相关问

作者: 肖义熙 | 来源:发表于2021-04-13 10:49 被阅读0次

    问:drawable和mipmap的区别是什么?

    答:根据官方说明:
    应用图标的图片资源存放在mipmap系列文件夹中,而其余图片存放在drawable系列文件夹中
    1、mipmap纹理映射技术会将资源缩放到设备分辨率大小,drawable会将资源缩放到设备匹配的倍数大小
    2、官方推荐开发者将位图等资源放在对应dpi的drawable/下,而不是放在mipmap/下。这样各种dpi可直接找到对应资源,减少了mipmap精确适配时需要缩放计算,也不会因为图片缩放导致显示问题
    3、高密度系统的设备去使用低密度目录下的图片资源时,会将图片长宽自动放大以去适应高密度的精度,当然图片占用的内存会更大。
    所以如果能提各种dpi的对应资源那是最好,可以达到较好内存使用效果。如果提供的图片资源有限,那么图片资源应该尽量放在高密度文件夹下,这样可以节省图片放大的内存开支

    打包时,可以根据目标设备打不同的dpi图片的包上架到应用市场中去,节省APK应用包体积。

    问:Bitmap内存占用怎么算的?如加载一张1080*1920的图片,内存占用多少?

    答:Bitmap的内存占用的大小是通过:

    宽 * 高 * 单位像素所占字节 //1080 * 1920 * 单位像素所占字节(ARGB值不同,占用字节不同)
    

    Bitmap.Config中有四种不同的ARGB: ALPHA_8、RGB_565、ARGB_4444、ARGB_8888
    ALPHA_8:每个像素占8位,没有色彩,只有透明度A-8 即10801920(8/8/1024/1024)= 1.98M
    RGB_565:每个像素每个像素占16位,没有透明度 5+6+5 = 16 即10801920(16/8/1024/1024) = 3.96M
    ARGB_4444:每个像素占16位,4+4+4+4 = 16 即 10801920(16/8/1024/1024) = 3.96M
    ARGB_8888:每个像素占32位,8+8+8+8 = 32 即 10801920(32/8/1024/1024) = 7.92M

    注意:加载图片所在内存还和图片放置的目录有关系:放在mdpi、xhdpi之下是不一样的。

    在Android 160dpi是系统默认dpi

    //获取图片bitmap宽高代码:
    Drawable drawable = imageView.getDrawable();
    if (drawable != null) {
        BitmapDrawable bitmapDrawable = (BitmapDrawable) drawable;
        Bitmap bitmap = bitmapDrawable.getBitmap();
        Log.d(TAG, " width = " + bitmap.getWidth() + " height = " + bitmap.getHeight());
    } 
    

    如果原图大小:352 * 484
    在320dpi(xhdpi)设备上运行,当图片放置在xhdpi中时,获取图片宽高依然是352 * 484。当图片放置在mdpi中时,获取宽高是 704 * 968,设备是320dpi的设备,当放置在mdpi时,系统认为图片需要放大,xhdpi是mdpi的两倍,所以获取bitmap的宽高放大了两倍。

    当图片都放置在xhdpi时,使用320dpi(xhdpi)设备获取图片宽高是352 * 484,当使用480dpi(xxhdpi)设备获取图片宽高位 528 * 726,即在480dpi设备上时,xhdpi下的图片都认为要被放大480/320(3/2)倍。

    结论:
    1、在同一个设备上,图片放在依次放在由低到高的分辨率目录中(mdpi~xxxhdpi),图片的 Bitmap 内存的大小不断减小。
    2、在同一个分辨率目录中,依次运行在由低到高的分辨率设备上,图片的 Bitmap 的大小不断增加。

    所以:如果只使用一套图片时,尽量把图片放到最大分辨率目录中

    问:系统如何选择drawable进行加载

    答:Android系统中,在加载图片时,会根据系统自身的dpi设备大小优先匹配最近的一个drawable目录,如果当前目录没有找到,则向上查找,一直找到nodpi,如果都没有找到则向下开始查找(肯定能找到,如果找不到编译器就报错了)。如:设备hdpi 则优先找drawable-hdpi目录下的资源,如果没有则向上 xhdpi、xxhdpi、xxxhdpi、nodpi,都没有的话则开始查找mdpi...

    问:Bitmap导致的OOM如何解决

    答:Android加载大图时极容易产生OOM,采用压缩算法、缓存、软引用、及时对不再使用的bitmap对象recycle释放等方式解决。
    通常会有四种压缩方案:
    1、质量压缩:

       /**
        * 将图片 bitmap 压缩到指定大小 targetSize 以内 ,单位是 kb
        * 这里的大小指的是 “文件大小”,而不是 “内存大小”
        **/
       fun compressQuality(bitmap: Bitmap, targetSize: Int, declineQuality: Int = 10): ByteArray {
            val baos = ByteArrayOutputStream()
            bitmap.compress(Bitmap.CompressFormat.JPEG, 100, baos)
            var quality = 100
            while ((baos.toByteArray().size / 1024) > targetSize) {
                baos.reset()
                quality -= declineQuality
                bitmap.compress(Bitmap.CompressFormat.JPEG, quality, baos)
            }
            return baos.toByteArray()
        }
    

    质量压缩通过减少图片色彩度,不会减少图片像素及宽高,所以不会减少加载到内存中所占的内存大小,只会减少图片所占磁盘的存储大小,是一种有损压缩。

    2、采样率压缩:Options.inSampleSize

    /**
       * 将图片 [byteArray] 压缩到 宽度小于 [targetWidth]、高度小于 [targetHeight]
       *
       **/
      fun compressInSampleSize(byteArray: ByteArray, targetWidth: Int, targetHeight: Int): Bitmap{
    
            val options = BitmapFactory.Options()  
            //设置inJustDecodeBounds = true 只加载图片宽高等信息,不加载图片到内存
            options.inJustDecodeBounds = true
            BitmapFactory.decodeByteArray(byteArray, 0, byteArray.size, options)
            //默认采样率为1,采样率 > 1, 采样率 inSampleSize 只能为 2 的整次幂,比如:2、4、8、16
            var inSampleSize = 1
            while (options.outWidth / inSampleSize > targetWidth || options.outHeight / inSampleSize > targetHeight) {
                inSampleSize *= 2
            }
            
            options.inJustDecodeBounds = false
            options.inSampleSize = inSampleSize
            val bitmap = BitmapFactory.decodeByteArray(byteArray, 0, byteArray.size, options)
      
            return bitmap 
        }
    

    采样率压缩其原理是缩放 bitmap 的尺寸,采样率inSampleSize为1时不变,2时宽高都变为原来的1/2,所占用内存大小就会变为原来的1/4,以此类推。
    由于 inSampleSize 只能为 2 的整次幂,所以无法精确控制大小

    3、缩放压缩:Matrix矩阵

       /**
         * 将图片 [bitmap] 压缩到指定宽高范围内
        **/
        fun compressScale(bitmap: Bitmap, targetWidth: Int, targetHeight: Int): Bitmap {
            return try {
                //计算缩放大小
                val scale = Math.min(targetWidth * 1.0f / bitmap.width, targetHeight * 1.0f / bitmap.height)
                //创建矩阵对象
                val matrix = Matrix()
                matrix.setScale(scale, scale)
                //利用矩阵对bitmap原始图片进行压缩生成新的bitmap
                val scaledBitmap = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true)
    
                scaledBitmap
            } catch (e: Exception) {
                e.printStackTrace()
                bitmap
            }
        }
    

    缩放压缩使用的是通过矩阵对图片进行缩放,缩放后图片的 宽度、高度以及占用的内存都会改变。

    4、色彩模式压缩:Options.inPreferredConfig = Bitmap.Config.XXXX

       /**
         * 将图片格式更改为 Bitmap.Config.RGB_565,减少图片占用的内存大小
        **/
        fun compressRGB565(byteArray: ByteArray): Bitmap {
            return try {
                val options = BitmapFactory.Options()
                options.inPreferredConfig = Bitmap.Config.RGB_565
                val compressedBitmap = BitmapFactory.decodeByteArray(byteArray, 0, byteArray.size, options)
                compressedBitmap
            } catch (e: Exception) {
                e.printStackTrace()
                BitmapFactory.decodeByteArray(ByteArray(0), 0, 0)
            }
        }
    

    色彩模式压缩后图片的宽高不会产生变化,由于图片的存储格式改变,与 ARGB_8888 相比,每个像素的占用的字节由 8 变为 4 , 所以图片占用的内存也为原来的一半。

    缓存
    简单说一下缓存吧,后续看Glide源码时再来了解。目前来讲缓存一般有内存缓存和磁盘缓存(网络缓存也不打算吧)
    内存缓存:Android SDK中提供了一个LruCache,用于内存缓存。
    磁盘缓存:Android SDK中不提供磁盘缓存的类,但google官方推荐的一个叫DiskLruCache算法。

    相关文章

      网友评论

          本文标题:Android面试Android进阶(十四)-Bitmap相关问

          本文链接:https://www.haomeiwen.com/subject/gzexlltx.html