美文网首页
声场能量密度能流密度声强

声场能量密度能流密度声强

作者: itkkanae | 来源:发表于2020-04-21 20:31 被阅读0次

    声能
     定义:由于声波传播而引起的介质能量的增量称为声能
     声传播过程中质点振动引起能量变化成为声动能E_{k}
     声传播过程中介质形变引起能量变化成为声势能E_{P}

    声能量密度
     定义:声场中单位体积介质所具有的机械能为声场的声能量密度
    假定在静止条件下,初速度为0,容易得到声动能的表达式:
    E_{k}=\frac{1}{2}m\overset{\rightarrow}{\mu}^{2}

    将质量替换为初始密度和初始体积还可以表示为:
    E_{k}=\frac{1}{2}\rho_{0}V_{0}\overset{\rightarrow}{\mu}^{2}

    下面假设在声场作用下,压强和体积由p_{0}V_{0}变为pV,声场引起的力做功为:
    E_{P}=\int\Delta fdl=\int\Delta pSdl=\int\Delta pdV\approx\frac{1}{2}\Delta p\Delta V

    将体积变化量用密度表示可得:
    \frac{1}{2}\Delta p\Delta V=\frac{1}{2}\Delta p(\frac{m}{\rho_{0}+\Delta\rho}-\frac{m}{\rho_{0}})=\frac{1}{2}\Delta p\frac{m\Delta\rho}{(\rho_{0}+\Delta\rho)\rho_{0}}

    因为\Delta\rho相对于\rho_{0}可以忽略不计,得:
    E_{P}\approx\frac{1}{2}\Delta p\frac{m\Delta\rho}{(\rho_{0}+\Delta\rho)\rho_{0}}\approx\frac{1}{2}\Delta p\frac{m\Delta\rho}{\rho_{0}^{2}}

    将状态方程\Delta p=c_{0}^{2}\Delta\rho带入上式,得:
    E_{P}\approx\frac{1}{2}\frac{\Delta p^{2}}{\rho_{0}c_{0}^{2}}V_{0}

    机械能为:
    E=E_{k}+E_{P}=\frac{1}{2}\rho_{0}V_{0}\overset{\rightarrow}{\mu}^{2}+\frac{1}{2}\frac{\Delta p^{2}}{\rho_{0}c_{0}^{2}}V_{0}

    能量密度为:
    U=\frac{E}{V}=\frac{1}{2}\rho_{0}\overset{\rightarrow}{\mu}^{2}+\frac{1}{2}\frac{\Delta p^{2}}{\rho_{0}c_{0}^{2}}

    声能流密度
     定义:单位时间内垂直于声传播方向截面上单位面积通过的声能量
    依然用下图来分析微元内的能量变化,设能流密度函数为\overset{\rightarrow}{S}=S_{x}\overset{\rightarrow}{i}+S_{y}\overset{\rightarrow}{j}+S_{z}\overset{\rightarrow}{k}

    不难得到x方向能量变化量:
    E_{A}=dydz(S_{x}-\frac{\partial S_{x}}{\partial x}\frac{1}{2}dx)dt

    E_{B}=-dydz(S_{x}+\frac{\partial S_{x}}{\partial x}\frac{1}{2}dx)dt

    \Delta E_{x}=E_{A}+E_{B}=-\frac{\partial S_{x}}{\partial x}dVdt

    进一步得到微元的能量变化量
    \Delta E=-(\frac{\partial S_{x}}{\partial x}+\frac{\partial S_{y}}{\partial y}+\frac{\partial S_{z}}{\partial z})dVdt

    \frac{\Delta E}{dt}=-\bigtriangledown\overset{\rightarrow}{S}dV

    将能量变化量用能量密度表示得:
    \frac{\Delta UdV}{dt}=-\bigtriangledown\overset{\rightarrow}{S}dV

    约去体积微元得到能量密度和能流密度关系:
    \frac{\partial U}{\partial t}=-\bigtriangledown\overset{\rightarrow}{S}

    等式左边可表示为:
    \frac{\partial U}{\partial t}=\frac{1}{2}\rho_{0}\frac{\partial\overset{\rightarrow}{\mu}^{2}}{\partial t}+\frac{1}{2}\frac{1}{\rho_{0}c_{0}^{2}}\frac{\partial\Delta p^{2}}{\partial t}

    直接对\overset{\rightarrow}{\mu}^{2}p^{2}求偏导得到
    \frac{\partial U}{\partial t}=\frac{1}{2}\rho_{0}2\overset{\rightarrow}{\mu}\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}+\frac{1}{2}\frac{1}{\rho_{0}c_{0}^{2}}2\Delta p\frac{\partial\Delta p}{\partial t}

    \frac{\partial U}{\partial t}=\overset{\rightarrow}{\mu}\rho_{0}\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}+\Delta p\frac{1}{\rho_{0}c_{0}^{2}}\frac{\partial\Delta p}{\partial t}

    第一项带入运动方程\rho_{0}\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}=-\bigtriangledown\Delta p得:
    \frac{\partial U}{\partial t}=-\overset{\rightarrow}{\mu}\bigtriangledown\Delta p+\Delta p\frac{1}{\rho_{0}c_{0}^{2}}\frac{\partial\Delta p}{\partial t}

    联立连续性方程\frac{\partial\Delta\rho}{\partial t}=-\rho_{0}\bigtriangledown\overset{\rightarrow}{\mu}和状态方程\Delta p=c_{0}^{2}\Delta\rho得:
    \frac{\partial\Delta p}{\partial t}=c_{0}^{2}\frac{\partial\Delta\rho}{\partial t}=-c_{0}^{2}\rho_{0}\bigtriangledown\overset{\rightarrow}{\mu}

    带入第二项得:
    \frac{\partial U}{\partial t}=-\overset{\rightarrow}{\mu}\bigtriangledown\Delta p-\Delta p\bigtriangledown\overset{\rightarrow}{\mu}

    \frac{\partial U}{\partial t}=-\bigtriangledown(\overset{\rightarrow}{\mu}\Delta p)

    由能流密度和能量密度的关系得:
    \frac{\partial U}{\partial t}=-\bigtriangledown\overset{\rightarrow}{S}=-\bigtriangledown(\overset{\rightarrow}{\mu}\Delta p)

    得到能流密度:
    \overset{\rightarrow}{S}=\overset{\rightarrow}{\mu}\Delta p

    声强
     定义:声能流密度在时间上的均值
    表示为:
    I=\frac{1}{T}\int_{0}^{T}\overset{\rightarrow}{S}dt

    谐和波声强计算公式:
    I=\frac{1}{2}p_{0}\mu_{0}Cos\phi_{0}

    其中p_{0}为声压幅值,\mu_{0}为质点振速幅值,\phi_{0}为声压和质点振速相位差

    相关文章

      网友评论

          本文标题:声场能量密度能流密度声强

          本文链接:https://www.haomeiwen.com/subject/gzfpihtx.html