美文网首页
逻辑回归

逻辑回归

作者: 求好运啊 | 来源:发表于2019-01-21 21:24 被阅读0次
sigmoid函数 预测函数
image.png
image.png
image.png
image.png

案例分析

说明:我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
%matplotlib inline

import os #系统库
path = 'data' + os.sep + 'LogiReg_data.txt'  # os.sep采用系统的分隔符
pdData = pd.read_csv(path, header = None, names = ['Exam1', 'Exam2', 'Admitted'])
#  读文件 (路径, 没有标题行,取标题名为'Exam 1', 'Exam 2', 'Admitted' )
pd.head()
pdData.shape()
pd.head()
positive = pdData[pdData['Admitted'] = 1]
# 将数据集pdData的‘Admited’列 = 1 的每一行数据赋给positive
negative = pdData[pdData['Admitted'] = 0]
fig, ax = plt.subplots(figsize = (10, 5))
# 画图,画图尺寸为(10,5)子区域名ax
# fig,ax = plt.subplots()等价于:
# fig = plt.figure()
# ax = fig.add_subplot(1,1,1)
ax.scatter(positive['Exam1'], positive['Exam2'], s = 30, c ='b', marker = 'o', labels = 'Admitted')
# 画散点图(取出正数据,散点大小为30,颜色为blue,形式为o,标签为录取)
ax.scatter(negative['Exam1'], ['Exam2'], s = 30, c ='r', marker = 'x', label = 'Not Admitted')
ax.legend() # 图例
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
image.png

The Logistic Regression

目标: 建立分类器(求解出三个参数θ0θ1θ2)
设定阈值, 根据阈值判断录取结果

要完成的模块

-sigmoid:映射到概率的函数
-model: 返回预测结果值
-cost:根据参数计算损失
-gradient: 计算每个参数的梯度方向
-descent: 进行参数更新
-accuracy:计算精度


sigmoid函数
def sigmoid(z):
     return 1/(1 + np.exp(-z))
nums = np.arange(-10, 10, step = 1)
fig, ax = plt.subplots(figsize = (12, 4))
ax,plot(nums, sigmoid(nums), 'r')
函数图像
sigmoid
def model(X, theta):
    return sigmoid(np.dot(X, theta.T))
#  np.dot()函数是进行矩阵相乘
矩阵相乘
pdData.insert(0, 'Ones', 1)


orig_data = pdData.as_matrix() 
cols = orig_data[:,0:cols-1]
y = orig_data[:, cols-1:cols]
theta = np.zeros([1, 3])
X[:5]
y[:5]
X
y
theta
X.shape,  y.shape, theta.shape
image.png

损失函数

损失函数
def cost(X, y, theta):
     left = np.multiply(-y, np.log(model(X, theta)))
     right = np.multiply(1, -y, np.log(1 - model(X, theta)))
     return np.sum(left - right) / (len(X))
cost(X, y, theta)
代价函数
def gradient(X, y, theta):
    grad = np.zero(theta.shape)
    error = (model(X, theta) - y).ravel()
# .ravel()是将多维的数组降为一维。  flatten()也有此效果
# numpy.flatten()返回一份拷贝,对数据更改时不会影响原来的数组,
# 而numpy.ravel()则返回视图,对数据更改时会影响原来的数组
    for j in range(len(theta.reval())): 
        term = np.multiply(error, X[:, j])
        grad[0, j] = np.sum(term) / len(X)
    return grad 

3种梯度下降的方法

STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2
def stopCriterion(type, value, threshould):
# 设定三种不同的停止策略
    if type == STOP_ITER:
        return value > threshold
    elif type == STOP_COST:
        return abs(value[-1] - value[-2]) < threshold
    elif  type == STOP_GRAD:
        return np.linalg.norm(value) < threshold
#np.linalg.norm()是求2范数
import numpy.random
# 打乱数据
def shuffData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols - 1]
    y = data[:, cols - 1:]
    return X, y
import time
def descent(data, theta, batchSize, stopType, thresh, alpha):
# 梯度下降求解
    init_time = time.time()
    i = 0 # 迭代次数
    k = 0 # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape) # 计算的梯度
    costs = [cost(X, y, theta)] # 损失值

    
    while True:
        grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta)
        k += batchSize #取batch数量个数据
        if k >= n: 
            k = 0 
            X, y = shuffleData(data) #重新洗牌
        theta = theta - alpha*grad # 参数更新
        costs.append(cost(X, y, theta)) # 计算新的损失
        i += 1 

        if stopType == STOP_ITER:       value = i
        elif stopType == STOP_COST:     value = costs
        elif stopType == STOP_GRAD:     value = grad
        if stopCriterion(stopType, value, thresh): break
    
    return theta, i-1, costs, grad, time.time() - init_time
def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    #import pdb; pdb.set_trace();
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize==n: strDescType = "Gradient"
    elif batchSize==1:  strDescType = "Stochastic"
    else: strDescType = "Mini-batch ({})".format(batchSize)
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
    else: strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta

不同的停止策略
设定迭代次数

#选择的梯度下降方法是基于所有样本的
n=100
runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
image.png

根据损失值停止
设定阈值1E-6,差不多需要110 000 次迭代

runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
image.png

根据梯度变化停止
设定阈值为0.05,差不多需要40 000 次迭代

runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)
image.png
对比不同梯度下降方法

随机梯度下降 Stochastic descent

runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
image.png

损失函数变化波动大,很不稳定,将学习率调小试试

runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
image.png

速度快,但稳定性差,需要很小的学习率

Mini-batch descent

runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
image.png

浮动仍然比较大,我们来尝试下对数据进行标准化 将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1

from sklearn import preprocessing as pp

scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])

runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
image.png

它好多了!原始数据,只能达到达到0.61,而我们得到了0.38个在这里! 所以对数据做预处理是非常重要的

runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001)
image.png

更多的迭代次数会使得损失下降的更多!

theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002/5, alpha=0.001)
image.png

随机梯度下降更快,但是我们需要迭代的次数也需要更多,所以还是用batch的比较合适!!!

runExpe(scaled_data, theta, 16, STOP_GRAD, thresh=0.002*2, alpha=0.001)
image.png
精度
#设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))

相关文章

  • 机器学习day7-逻辑回归问题

    逻辑回归 逻辑回归,是最常见最基础的模型。 逻辑回归与线性回归 逻辑回归处理的是分类问题,线性回归处理回归问题。两...

  • ML03-逻辑回归(下部分)

    本文主题-逻辑回归(下部分):逻辑回归的应用背景逻辑回归的数学基础逻辑回归的模型与推导逻辑回归算法推导梯度下降算法...

  • ML02-逻辑回归(上部分)

    本文主题-逻辑回归(上部分):逻辑回归的应用背景逻辑回归的数学基础逻辑回归的模型与推导逻辑回归算法推导梯度下降算法...

  • 逻辑回归模型

    1.逻辑回归介绍2.机器学习中的逻辑回归3.逻辑回归面试总结4.逻辑回归算法原理推导5.逻辑回归(logistic...

  • Task 01|基于逻辑回归的分类预测

    知识背景 关于逻辑回归的几个问题 逻辑回归相比线性回归,有何异同? 逻辑回归和线性回归最大的不同点是逻辑回归解决的...

  • 11. 分类算法-逻辑回归

    逻辑回归 逻辑回归是解决二分类问题的利器 逻辑回归公式 sklearn逻辑回归的API sklearn.linea...

  • 机器学习100天-Day4-6逻辑回归

    逻辑回归(Logistic Regression) 什么是逻辑回归 逻辑回归被用于对不同问题进行分类。在这里,逻辑...

  • SKlearn_逻辑回归小练习

    逻辑回归 逻辑回归(Logistic regression 或logit regression),即逻辑模型(英语...

  • R glm

    R 逻辑回归 R 怎么做逻辑回归

  • 逻辑斯蒂回归在二分类中的应用

    逻辑回归简介 逻辑斯蒂回归(logistic regression,又称“对数几率回归”)是经典的分类方法。逻辑斯...

网友评论

      本文标题:逻辑回归

      本文链接:https://www.haomeiwen.com/subject/hbirjqtx.html