1.豆瓣即将上映电影top5(条形图、横向条形图、电影国家占比饼图)
from xpinyin import Pinyin
import requests
from lxml import html
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import pandas as pd
# pip install xpinyin
def spider(city):
# splitter 是分隔使用符号,默认是 '-'
city_pinyin = Pinyin().get_pinyin(city,splitter='')
url = 'https://movie.douban.com/cinema/later/{}/'.format(city_pinyin)
print('您要爬取的目标站点是', url)
print('爬虫进行中,请稍后.........')
# 请求头信息, 目的是伪装成浏览器进行爬虫
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:70.0) Gecko/20100101 Firefox/70.0'}
# 获取网页的源代码
response = requests.get(url, headers = headers)
html_data = response.text
# print(html_data)
# 提取我们想要的内容
selector = html.fromstring(html_data)
div_list = selector.xpath('//div[@id="showing-soon"]/div')
print('您好,{}市共查询到{}部即将上映的电影'.format(city, len(div_list)))
movie_info_list = []
counts={}
for div in div_list:
# 获取电影名字
movie_name = div.xpath('div[1]/h3/a/text()')
# if len(movie_name)==0:
# movie_name = '没有查询到数据'
# else:
# movie_name = movie_name[0]
movie_name = '对不起,没有查询到数据' if len(movie_name) == 0 else movie_name[0]
# print(movie_name)
# 上映日期
date = div.xpath('div[1]/ul/li[1]/text()')
date = '对不起,没有查询到数据' if len(date) == 0 else date[0]
# print(date)
# 类型
type = div.xpath('div[1]/ul/li[2]/text()')
type = '对不起,没有查询到数据' if len(type) == 0 else type[0]
# print(type)
# 国家
country = div.xpath('div[1]/ul/li[3]/text()')
country = '对不起,没有查询到数据' if len(country) == 0 else country[0]
# print(country)
# 想看人数
want_see = div.xpath('div[1]/ul/li[4]/span/text()')
want_see = '对不起,没有查询到数据' if len(want_see) == 0 else want_see[0]
want_see = int(want_see.replace('人想看', ''))
# print(want_see)
# 图片链接
img_link = div.xpath('a/img/@src')[0]
movie_info_list.append({
"movie_name": movie_name,
"date": date,
"type": type,
"country": country,
"want_see": want_see,
"img_link": img_link
})
for movie in movie_info_list:
counts[movie['country']] = counts.get(movie['country'], 0) +1
# print(counts)
labels = list(counts.keys())
num = list(counts.values())
# print(num)
# print(labels)
movie_info_list.sort(key=lambda x: x['want_see'],reverse=True)
# y = [movie['want_see'] for movie in movie_info_list]
# y = [y[i] for i in range(5)]
# print(y)
# x = [movie['movie_name'] for movie in movie_info_list]
# x = [x[i] for i in range(5)]
# print(x)
#优化版
x = [movie['movie_name'] for movie in movie_info_list[:5]]
y =[movie['want_see'] for movie in movie_info_list[:5]]
#条形图
plt.bar(x, y)
plt.grid()
plt.title('豆瓣即将上映热度前五')
plt.xlabel('电影名')
plt.ylabel('热度')
plt.show()
#横向条形图
plt.barh(x, y)
plt.grid()
plt.title('豆瓣即将上映热度前五')
plt.ylabel('电影名')
plt.xlabel('热度')
plt.show()
#饼状图
colors = ['red', 'green', 'yellow']
# 每一个元素距离中心点的距离,可选值0~1
explode = [0, 0, 0, 0, 0, 0, 0, 0.2]
plt.pie(x=num,
labels=labels,
colors=colors,
shadow=True,
startangle=270, # 开始角度
# explode=explode,
autopct='%1.1f%%' # 显示百分比
)
plt.axis('equal') # 设置成标准圆形
plt.legend(loc=2) # 指定象线
plt.title('电影国家占比')
plt.show()
# 在屏幕中输入请输入您要查看即将上映电影信息的城市
city = input('输入您要查看即将上映电影信息的城市')
# 调用函数
spider(city)
条形图
横向条形图
电影国家占比
2.三国人物分析top10(条形图和饼状图)
import jieba
from matplotlib import pyplot as plt
#设置支持中文字体
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
#import imageio
# 读取文件
#mask = imageio.imread('china.jpg')
with open('novel/threekingdom.txt', 'r', encoding='UTF-8') as f:
data = f.read()
# 分词
words_list = jieba.lcut(data)
# print(words_list)
# 构建一个集合,定义无关词
excludes = {"将军","却说","二人","不可","荆州","不能","如此","丞相",
"商议","如何","主公","军士","军马","左右","次日","引兵",
"大喜","天下","东吴","于是","今日","不敢","魏兵","陛下",
"都督","人马","不知","孔明曰","玄德曰","玄德","云长"}
#,"","","","","","","","","","",
# 构建一个容器,存储我们要的数据
# {"夏侯渊":34,"害怕":33......}\
counts = {}
# 遍历wordlist 目标是筛选出人名
for word in words_list:
# print(word)
if len(word) <= 1:
# 过滤无关词语即可
continue
else:
# 向字典counts里更新值
# counts[word] = 字典中原来该词出现的次数 + 1
# counts[word] = counts[word] + 1
# counts["正文"] = counts["正文"] +1
counts[word] = counts.get(word, 0) + 1
# print(counts)
# 指向同一个词的人进行合并
counts['孔明'] = counts['孔明'] + counts['孔明曰']
counts['刘备'] = counts['玄德'] + counts['玄德曰'] + counts['刘备']
counts['关公'] = counts['关公'] + counts['云长']
# 删除无关的词语
for word in excludes:
del counts[word]
# 排序筛选
# 吧字典转化成列表 [(),()] [{},{}]
items = list(counts.items())
# 按照词频次数进行排序
items.sort(key=lambda x: x[1],reverse=True)
# print(items)
x = [role[0] for role in items]
x = [x[i] for i in range(10)]
print(x)
y = [counts[1] for counts in items]
y = [y[i] for i in range(10)]
#绘制条形图
plt.bar(x, y)
plt.grid()
plt.title('三国人物前10排名')
plt.xlabel('人物')
plt.ylabel('热度')
plt.show()
#绘制饼形图
colors=['red','green','yellow','pink','orange','blue']
labels=x
#每一个元素距离中心点的距离,可选值0~1
explode = [0,0,0,0,0,0,0,0.2]
plt.pie(x=y,#饼图中的数值
labels=labels,#饼图外围的标签
colors=colors,
shadow=True,
#startangle=270,#开始角度
#explode=explode,
autopct='%1.1f%%'#显示百分比
)
plt.axis('equal') #设置成标准圆形
plt.legend(loc=2) #指定象线
plt.title('三国人物top10')
plt.show()
条形图
饼形图
网友评论