美文网首页
ArrayList源码分析

ArrayList源码分析

作者: 蜗牛写java | 来源:发表于2018-10-15 23:57 被阅读0次
public class JDKArrayList<E> extends AbstractList<E>implements List<E>, RandomAccess, Cloneable, java.io.Serializable {

    // 序列版本号
    private static final long serialVersionUID = 8683452581122892189L;

    // 默认初始化容量
    private static final int DEFAULT_CAPACITY = 10;

    // 空数组,用来实例化不带容量大小的构造函数
    private static final Object[] EMPTY_ELEMENTDATA = {};

    // 保存ArrayList中数据的数组
    private transient Object[] elementData;

    // ArrayList中实际数据的数量
    private int size;

    /**
     * Constructs an empty list with the specified initial capacity.
     *
     * @param initialCapacity
     *            the initial capacity of the list
     * @throws IllegalArgumentException
     *             if the specified initial capacity is negative
     */
    public JDKArrayList(int initialCapacity) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
        this.elementData = new Object[initialCapacity];
    }

    /**
     * Constructs an empty list with an initial capacity of ten.
     */
    public JDKArrayList() {
        super();
        this.elementData = EMPTY_ELEMENTDATA;
    }

    /**
     * Constructs a list containing the elements of the specified collection, in
     * the order they are returned by the collection's iterator.
     *
     * @param c
     *            the collection whose elements are to be placed into this list
     * @throws NullPointerException
     *             if the specified collection is null
     */
    public JDKArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        size = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    }

    /**
     * Trims the capacity of this <tt>ArrayList</tt> instance to be the list's
     * current size. An application can use this operation to minimize the
     * storage of an <tt>ArrayList</tt> instance.
     */
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = Arrays.copyOf(elementData, size);
        }
    }

    // 给数组扩容,该方法是提供给外界调用的,是public的,真正扩容是在下面的private方法里
    public void ensureCapacity(int minCapacity) {
        int minExpand = (elementData != EMPTY_ELEMENTDATA)
                // any size if real element table
                ? 0
                // larger than default for empty table. It's already supposed to
                // be
                // at default size.
                : DEFAULT_CAPACITY;

        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }

    private void ensureCapacityInternal(int minCapacity) {
        // 如果是个空数组
        if (elementData == EMPTY_ELEMENTDATA) {
            // 取minCapacity和10的较大者
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        // 如果数组已经有数据了
        ensureExplicitCapacity(minCapacity);
    }

    // 确保数组容量大于ArrayList中元素个数
    private void ensureExplicitCapacity(int minCapacity) {
        modCount++; // 将“修改统计数”+1

        // 如果实际数据容量大于数组容量,就给数组扩容
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    // 分配的最大数组空间
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    // 增大数组空间
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1); // 在原来容量的基础上加上
                                                            // oldCapacity/2
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity; // 最少保证容量和minCapacity一样
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity); // 最多不能超过最大容量
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;
    }

    /**
     * Returns the number of elements in this list.
     *
     * @return the number of elements in this list
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this list contains no elements.
     *
     * @return <tt>true</tt> if this list contains no elements
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns <tt>true</tt> if this list contains the specified element. More
     * formally, returns <tt>true</tt> if and only if this list contains at
     * least one element <tt>e</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
     *
     * @param o
     *            element whose presence in this list is to be tested
     * @return <tt>true</tt> if this list contains the specified element
     */
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }

    /**
     * Returns the index of the first occurrence of the specified element in
     * this list, or -1 if this list does not contain the element. More
     * formally, returns the lowest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i] == null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * Returns the index of the last occurrence of the specified element in this
     * list, or -1 if this list does not contain the element. More formally,
     * returns the highest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size - 1; i >= 0; i--)
                if (elementData[i] == null)
                    return i;
        } else {
            for (int i = size - 1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * Returns a shallow copy of this <tt>ArrayList</tt> instance. (The elements
     * themselves are not copied.)
     *
     * @return a clone of this <tt>ArrayList</tt> instance
     */
    public Object clone() {
        try {
            JDKArrayList<?> v = (JDKArrayList<?>) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    /**
     * Returns an array containing all of the elements in this list in proper
     * sequence (from first to last element).
     *
     * <p>
     * The returned array will be "safe" in that no references to it are
     * maintained by this list. (In other words, this method must allocate a new
     * array). The caller is thus free to modify the returned array.
     *
     * <p>
     * This method acts as bridge between array-based and collection-based APIs.
     *
     * @return an array containing all of the elements in this list in proper
     *         sequence
     */
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }

    /**
     * Returns an array containing all of the elements in this list in proper
     * sequence (from first to last element); the runtime type of the returned
     * array is that of the specified array. If the list fits in the specified
     * array, it is returned therein. Otherwise, a new array is allocated with
     * the runtime type of the specified array and the size of this list.
     *
     * <p>
     * If the list fits in the specified array with room to spare (i.e., the
     * array has more elements than the list), the element in the array
     * immediately following the end of the collection is set to <tt>null</tt>.
     * (This is useful in determining the length of the list <i>only</i> if the
     * caller knows that the list does not contain any null elements.)
     *
     * @param a
     *            the array into which the elements of the list are to be
     *            stored, if it is big enough; otherwise, a new array of the
     *            same runtime type is allocated for this purpose.
     * @return an array containing the elements of the list
     * @throws ArrayStoreException
     *             if the runtime type of the specified array is not a supertype
     *             of the runtime type of every element in this list
     * @throws NullPointerException
     *             if the specified array is null
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    /**
     * Returns the element at the specified position in this list.
     *
     * @param index
     *            index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException
     *             {@inheritDoc}
     */
    public E get(int index) {
        rangeCheck(index);

        return elementData(index);
    }

    /**
     * Replaces the element at the specified position in this list with the
     * specified element.
     *
     * @param index
     *            index of the element to replace
     * @param element
     *            element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException
     *             {@inheritDoc}
     */
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    /**
     * Appends the specified element to the end of this list.
     *
     * @param e
     *            element to be appended to this list
     * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1); // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

    /**
     * Inserts the specified element at the specified position in this list.
     * Shifts the element currently at that position (if any) and any subsequent
     * elements to the right (adds one to their indices).
     *
     * @param index
     *            index at which the specified element is to be inserted
     * @param element
     *            element to be inserted
     * @throws IndexOutOfBoundsException
     *             {@inheritDoc}
     */
    public void add(int index, E element) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1); // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1, size - index);
        elementData[index] = element;
        size++;
    }

    /**
     * Removes the element at the specified position in this list. Shifts any
     * subsequent elements to the left (subtracts one from their indices).
     *
     * @param index
     *            the index of the element to be removed
     * @return the element that was removed from the list
     * @throws IndexOutOfBoundsException
     *             {@inheritDoc}
     */
    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index + 1, elementData, index, numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

    /**
     * Removes the first occurrence of the specified element from this list, if
     * it is present. If the list does not contain the element, it is unchanged.
     * More formally, removes the element with the lowest index <tt>i</tt> such
     * that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
     * (if such an element exists). Returns <tt>true</tt> if this list contained
     * the specified element (or equivalently, if this list changed as a result
     * of the call).
     *
     * @param o
     *            element to be removed from this list, if present
     * @return <tt>true</tt> if this list contained the specified element
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }

    /*
     * Private remove method that skips bounds checking and does not return the
     * value removed.
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index + 1, elementData, index, numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

    /**
     * Removes all of the elements from this list. The list will be empty after
     * this call returns.
     */
    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

    /**
     * Appends all of the elements in the specified collection to the end of
     * this list, in the order that they are returned by the specified
     * collection's Iterator. The behavior of this operation is undefined if the
     * specified collection is modified while the operation is in progress.
     * (This implies that the behavior of this call is undefined if the
     * specified collection is this list, and this list is nonempty.)
     *
     * @param c
     *            collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws NullPointerException
     *             if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew); // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * Inserts all of the elements in the specified collection into this list,
     * starting at the specified position. Shifts the element currently at that
     * position (if any) and any subsequent elements to the right (increases
     * their indices). The new elements will appear in the list in the order
     * that they are returned by the specified collection's iterator.
     *
     * @param index
     *            index at which to insert the first element from the specified
     *            collection
     * @param c
     *            collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws IndexOutOfBoundsException
     *             {@inheritDoc}
     * @throws NullPointerException
     *             if the specified collection is null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew); // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew, numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * Removes from this list all of the elements whose index is between
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. Shifts any
     * succeeding elements to the left (reduces their index). This call shortens
     * the list by {@code (toIndex - fromIndex)} elements. (If
     * {@code toIndex==fromIndex}, this operation has no effect.)
     *
     * @throws IndexOutOfBoundsException
     *             if {@code fromIndex} or {@code toIndex} is out of range (
     *             {@code fromIndex < 0 ||
     *          fromIndex >= size() ||
     *          toIndex > size() ||
     *          toIndex < fromIndex})
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex - fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }

    /**
     * Checks if the given index is in range. If not, throws an appropriate
     * runtime exception. This method does *not* check if the index is negative:
     * It is always used immediately prior to an array access, which throws an
     * ArrayIndexOutOfBoundsException if index is negative.
     */
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * Constructs an IndexOutOfBoundsException detail message. Of the many
     * possible refactorings of the error handling code, this "outlining"
     * performs best with both server and client VMs.
     */
    private String outOfBoundsMsg(int index) {
        return "Index: " + index + ", Size: " + size;
    }

    /**
     * Removes from this list all of its elements that are contained in the
     * specified collection.
     *
     * @param c
     *            collection containing elements to be removed from this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException
     *             if the class of an element of this list is incompatible with
     *             the specified collection (
     *             <a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException
     *             if this list contains a null element and the specified
     *             collection does not permit null elements (
     *             <a href="Collection.html#optional-restrictions">optional</a>
     *             ), or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }

    /**
     * Retains only the elements in this list that are contained in the
     * specified collection. In other words, removes from this list all of its
     * elements that are not contained in the specified collection.
     *
     * @param c
     *            collection containing elements to be retained in this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException
     *             if the class of an element of this list is incompatible with
     *             the specified collection (
     *             <a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException
     *             if this list contains a null element and the specified
     *             collection does not permit null elements (
     *             <a href="Collection.html#optional-restrictions">optional</a>
     *             ), or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }

    private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r, elementData, w, size - r);
                w += size - r;
            }
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }

    /**
     * Save the state of the <tt>ArrayList</tt> instance to a stream (that is,
     * serialize it).
     *
     * @serialData The length of the array backing the <tt>ArrayList</tt>
     *             instance is emitted (int), followed by all of its elements
     *             (each an <tt>Object</tt>) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i = 0; i < size; i++) {
            s.writeObject(elementData[i]);
        }

        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i = 0; i < size; i++) {
                a[i] = s.readObject();
            }
        }
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence), starting at the specified position in the list. The specified
     * index indicates the first element that would be returned by an initial
     * call to {@link ListIterator#next next}. An initial call to
     * {@link ListIterator#previous previous} would return the element with the
     * specified index minus one.
     *
     * <p>
     * The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @throws IndexOutOfBoundsException
     *             {@inheritDoc}
     */
    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: " + index);
        return new ListItr(index);
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence).
     *
     * <p>
     * The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @see #listIterator(int)
     */
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }

    /**
     * Returns an iterator over the elements in this list in proper sequence.
     *
     * <p>
     * The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @return an iterator over the elements in this list in proper sequence
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

    /**
     * An optimized version of AbstractList.Itr
     */
    private class Itr implements Iterator<E> {
        int cursor; // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        public boolean hasNext() {
            return cursor != size;
        }

        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = JDKArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }

        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                JDKArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> consumer) {
            Objects.requireNonNull(consumer);
            final int size = JDKArrayList.this.size;
            int i = cursor;
            if (i >= size) {
                return;
            }
            final Object[] elementData = JDKArrayList.this.elementData;
            if (i >= elementData.length) {
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[i++]);
            }
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    /**
     * An optimized version of AbstractList.ListItr
     */
    private class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        @SuppressWarnings("unchecked")
        public E previous() {
            checkForComodification();
            int i = cursor - 1;
            if (i < 0)
                throw new NoSuchElementException();
            Object[] elementData = JDKArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[lastRet = i];
        }

        public void set(E e) {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                JDKArrayList.this.set(lastRet, e);
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        public void add(E e) {
            checkForComodification();

            try {
                int i = cursor;
                JDKArrayList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a view of the portion of this list between the specified
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
     * empty.) The returned list is backed by this list, so non-structural
     * changes in the returned list are reflected in this list, and vice-versa.
     * The returned list supports all of the optional list operations.
     *
     * <p>
     * This method eliminates the need for explicit range operations (of the
     * sort that commonly exist for arrays). Any operation that expects a list
     * can be used as a range operation by passing a subList view instead of a
     * whole list. For example, the following idiom removes a range of elements
     * from a list:
     * 
     * <pre>
     * list.subList(from, to).clear();
     * </pre>
     * 
     * Similar idioms may be constructed for {@link #indexOf(Object)} and
     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
     * {@link Collections} class can be applied to a subList.
     *
     * <p>
     * The semantics of the list returned by this method become undefined if the
     * backing list (i.e., this list) is <i>structurally modified</i> in any way
     * other than via the returned list. (Structural modifications are those
     * that change the size of this list, or otherwise perturb it in such a
     * fashion that iterations in progress may yield incorrect results.)
     *
     * @throws IndexOutOfBoundsException
     *             {@inheritDoc}
     * @throws IllegalArgumentException
     *             {@inheritDoc}
     */
    public List<E> subList(int fromIndex, int toIndex) {
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, 0, fromIndex, toIndex);
    }

    static void subListRangeCheck(int fromIndex, int toIndex, int size) {
        if (fromIndex < 0)
            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
        if (toIndex > size)
            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
        if (fromIndex > toIndex)
            throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
    }

    private class SubList extends AbstractList<E>implements RandomAccess {
        private final AbstractList<E> parent;
        private final int parentOffset;
        private final int offset;
        int size;

        SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) {
            this.parent = parent;
            this.parentOffset = fromIndex;
            this.offset = offset + fromIndex;
            this.size = toIndex - fromIndex;
            this.modCount = JDKArrayList.this.modCount;
        }

        public E set(int index, E e) {
            rangeCheck(index);
            checkForComodification();
            E oldValue = JDKArrayList.this.elementData(offset + index);
            JDKArrayList.this.elementData[offset + index] = e;
            return oldValue;
        }

        public E get(int index) {
            rangeCheck(index);
            checkForComodification();
            return JDKArrayList.this.elementData(offset + index);
        }

        public int size() {
            checkForComodification();
            return this.size;
        }

        public void add(int index, E e) {
            rangeCheckForAdd(index);
            checkForComodification();
            parent.add(parentOffset + index, e);
            // this.modCount = parent.modCount;
            this.size++;
        }

        public E remove(int index) {
            rangeCheck(index);
            checkForComodification();
            E result = parent.remove(parentOffset + index);
            // this.modCount = parent.modCount;
            this.size--;
            return result;
        }

        protected void removeRange(int fromIndex, int toIndex) {
            checkForComodification();
            // parent.removeRange(parentOffset + fromIndex, parentOffset +
            // toIndex);
            // this.modCount = parent.modCount;
            this.size -= toIndex - fromIndex;
        }

        public boolean addAll(Collection<? extends E> c) {
            return addAll(this.size, c);
        }

        public boolean addAll(int index, Collection<? extends E> c) {
            rangeCheckForAdd(index);
            int cSize = c.size();
            if (cSize == 0)
                return false;

            checkForComodification();
            parent.addAll(parentOffset + index, c);
            // this.modCount = parent.modCount;
            this.size += cSize;
            return true;
        }

        public Iterator<E> iterator() {
            return listIterator();
        }

        public ListIterator<E> listIterator(final int index) {
            checkForComodification();
            rangeCheckForAdd(index);
            final int offset = this.offset;

            return new ListIterator<E>() {
                int cursor = index;
                int lastRet = -1;
                int expectedModCount = JDKArrayList.this.modCount;

                public boolean hasNext() {
                    return cursor != SubList.this.size;
                }

                @SuppressWarnings("unchecked")
                public E next() {
                    checkForComodification();
                    int i = cursor;
                    if (i >= SubList.this.size)
                        throw new NoSuchElementException();
                    Object[] elementData = JDKArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i + 1;
                    return (E) elementData[offset + (lastRet = i)];
                }

                public boolean hasPrevious() {
                    return cursor != 0;
                }

                @SuppressWarnings("unchecked")
                public E previous() {
                    checkForComodification();
                    int i = cursor - 1;
                    if (i < 0)
                        throw new NoSuchElementException();
                    Object[] elementData = JDKArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i;
                    return (E) elementData[offset + (lastRet = i)];
                }

                @SuppressWarnings("unchecked")
                public void forEachRemaining(Consumer<? super E> consumer) {
                    Objects.requireNonNull(consumer);
                    final int size = SubList.this.size;
                    int i = cursor;
                    if (i >= size) {
                        return;
                    }
                    final Object[] elementData = JDKArrayList.this.elementData;
                    if (offset + i >= elementData.length) {
                        throw new ConcurrentModificationException();
                    }
                    while (i != size && modCount == expectedModCount) {
                        consumer.accept((E) elementData[offset + (i++)]);
                    }
                    // update once at end of iteration to reduce heap write
                    // traffic
                    lastRet = cursor = i;
                    checkForComodification();
                }

                public int nextIndex() {
                    return cursor;
                }

                public int previousIndex() {
                    return cursor - 1;
                }

                public void remove() {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        SubList.this.remove(lastRet);
                        cursor = lastRet;
                        lastRet = -1;
                        expectedModCount = JDKArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void set(E e) {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        JDKArrayList.this.set(offset + lastRet, e);
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void add(E e) {
                    checkForComodification();

                    try {
                        int i = cursor;
                        SubList.this.add(i, e);
                        cursor = i + 1;
                        lastRet = -1;
                        expectedModCount = JDKArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                final void checkForComodification() {
                    if (expectedModCount != JDKArrayList.this.modCount)
                        throw new ConcurrentModificationException();
                }
            };
        }

        public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, offset, fromIndex, toIndex);
        }

        private void rangeCheck(int index) {
            if (index < 0 || index >= this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private void rangeCheckForAdd(int index) {
            if (index < 0 || index > this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private String outOfBoundsMsg(int index) {
            return "Index: " + index + ", Size: " + this.size;
        }

        private void checkForComodification() {
            if (JDKArrayList.this.modCount != this.modCount)
                throw new ConcurrentModificationException();
        }

        public Spliterator<E> spliterator() {
            checkForComodification();
            return new ArrayListSpliterator<E>(JDKArrayList.this, offset, offset + this.size, this.modCount);
        }
    }

    @Override
    public void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int size = this.size;
        for (int i = 0; modCount == expectedModCount && i < size; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
     * list.
     *
     * <p>
     * The {@code Spliterator} reports {@link Spliterator#SIZED},
     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. Overriding
     * implementations should document the reporting of additional
     * characteristic values.
     *
     * @return a {@code Spliterator} over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new ArrayListSpliterator<>(this, 0, -1, 0);
    }

    /** Index-based split-by-two, lazily initialized Spliterator */
    static final class ArrayListSpliterator<E> implements Spliterator<E> {

        /*
         * If ArrayLists were immutable, or structurally immutable (no adds,
         * removes, etc), we could implement their spliterators with
         * Arrays.spliterator. Instead we detect as much interference during
         * traversal as practical without sacrificing much performance. We rely
         * primarily on modCounts. These are not guaranteed to detect
         * concurrency violations, and are sometimes overly conservative about
         * within-thread interference, but detect enough problems to be
         * worthwhile in practice. To carry this out, we (1) lazily initialize
         * fence and expectedModCount until the latest point that we need to
         * commit to the state we are checking against; thus improving
         * precision. (This doesn't apply to SubLists, that create spliterators
         * with current non-lazy values). (2) We perform only a single
         * ConcurrentModificationException check at the end of forEach (the most
         * performance-sensitive method). When using forEach (as opposed to
         * iterators), we can normally only detect interference after actions,
         * not before. Further CME-triggering checks apply to all other possible
         * violations of assumptions for example null or too-small elementData
         * array given its size(), that could only have occurred due to
         * interference. This allows the inner loop of forEach to run without
         * any further checks, and simplifies lambda-resolution. While this does
         * entail a number of checks, note that in the common case of
         * list.stream().forEach(a), no checks or other computation occur
         * anywhere other than inside forEach itself. The other less-often-used
         * methods cannot take advantage of most of these streamlinings.
         */

        private final JDKArrayList<E> list;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /** Create new spliterator covering the given range */
        ArrayListSpliterator(JDKArrayList<E> list, int origin, int fence, int expectedModCount) {
            this.list = list; // OK if null unless traversed
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }

        private int getFence() { // initialize fence to size on first use
            int hi; // (a specialized variant appears in method forEach)
            JDKArrayList<E> lst;
            if ((hi = fence) < 0) {
                if ((lst = list) == null)
                    hi = fence = 0;
                else {
                    expectedModCount = lst.modCount;
                    hi = fence = lst.size;
                }
            }
            return hi;
        }

        public ArrayListSpliterator<E> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null
                    : // divide range in half unless too small
                    new ArrayListSpliterator<E>(list, lo, index = mid, expectedModCount);
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            if (action == null)
                throw new NullPointerException();
            int hi = getFence(), i = index;
            if (i < hi) {
                index = i + 1;
                @SuppressWarnings("unchecked")
                E e = (E) list.elementData[i];
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            int i, hi, mc; // hoist accesses and checks from loop
            JDKArrayList<E> lst;
            Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null && (a = lst.elementData) != null) {
                if ((hi = fence) < 0) {
                    mc = lst.modCount;
                    hi = lst.size;
                } else
                    mc = expectedModCount;
                if ((i = index) >= 0 && (index = hi) <= a.length) {
                    for (; i < hi; ++i) {
                        @SuppressWarnings("unchecked")
                        E e = (E) a[i];
                        action.accept(e);
                    }
                    if (lst.modCount == mc)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }

        public long estimateSize() {
            return (long) (getFence() - index);
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

    @Override
    public boolean removeIf(Predicate<? super E> filter) {
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i = 0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

        // shift surviving elements left over the spaces left by removed
        // elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i = 0, j = 0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k = newSize; k < size; k++) {
                elementData[k] = null; // Let gc do its work
            }
            this.size = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void replaceAll(UnaryOperator<E> operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i = 0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
}

相关文章

网友评论

      本文标题:ArrayList源码分析

      本文链接:https://www.haomeiwen.com/subject/hdqczftx.html