美文网首页
Stochastic Video Generation

Stochastic Video Generation

作者: 杨逸凡 | 来源:发表于2018-03-10 18:40 被阅读0次
parser.add_argument('--n_past', type=int, default=5, help='number of frames to condition on')
parser.add_argument('--n_future', type=int, default=10, help='number of frames to predict during training')
parser.add_argument('--n_eval', type=int, default=30, help='number of frames to predict during eval')

n_past个frame作为参考,预测之后n_future个frame。

LSTM Model

import models.lstm as lstm_models
if opt.model_dir != '':
    frame_predictor = saved_model['frame_predictor']
    posterior = saved_model['posterior']
    prior = saved_model['prior']
else:
    frame_predictor = lstm_models.lstm(opt.g_dim+opt.z_dim, opt.g_dim, opt.rnn_size, opt.rnn_layers, opt.batch_size)
    posterior = lstm_models.gaussian_lstm(opt.g_dim, opt.z_dim, opt.rnn_size, opt.rnn_layers, opt.batch_size)
    prior = lstm_models.gaussian_lstm(opt.g_dim, opt.z_dim, opt.rnn_size, opt.rnn_layers, opt.batch_size)
    frame_predictor.apply(utils.init_weights)
    posterior.apply(utils.init_weights)
    prior.apply(utils.init_weights)

其中lstm.py如下:

class lstm(nn.Module):
    def __init__(self, input_size, output_size, hidden_size, n_layers, batch_size):
        super(lstm, self).__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size = hidden_size
        self.batch_size = batch_size
        self.n_layers = n_layers
        self.embed = nn.Linear(input_size, hidden_size)
        self.lstm = nn.ModuleList([nn.LSTMCell(hidden_size, hidden_size) for i in range(self.n_layers)])
        self.output = nn.Sequential(
                nn.Linear(hidden_size, output_size),
                #nn.BatchNorm1d(output_size),
                nn.Tanh())
        self.hidden = self.init_hidden()

    def init_hidden(self):
        hidden = []
        for i in range(self.n_layers):
            hidden.append((Variable(torch.zeros(self.batch_size, self.hidden_size).cuda()),
                           Variable(torch.zeros(self.batch_size, self.hidden_size).cuda())))
        return hidden

    def forward(self, input):
        embedded = self.embed(input.view(-1, self.input_size))
        h_in = embedded
        for i in range(self.n_layers):
            self.hidden[i] = self.lstm[i](h_in, self.hidden[i])
            h_in = self.hidden[i][0]

        return self.output(h_in)

继承了nn.Module的类在赋值时提供大小参数(初始化),在调用时提供输入参数(forward计算)。里面的nn.Linear(insize, outsize)、nn.LSTMCell(insize, outsize)等等也是一样的工作原理。

lstm与gaussian_lstm区别在于:

class gaussian_lstm(nn.Module):
    def __init__(self, input_size, output_size, hidden_size, n_layers, batch_size):
        ...
        self.mu_net = nn.Linear(hidden_size, output_size)
        self.logvar_net = nn.Linear(hidden_size, output_size)
        ...

    def reparameterize(self, mu, logvar):
        logvar = logvar.mul(0.5).exp_()
        eps = Variable(logvar.data.new(logvar.size()).normal_())
        return eps.mul(logvar).add_(mu)

    def forward(self, input):
        embedded = self.embed(input.view(-1, self.input_size))
        h_in = embedded
        for i in range(self.n_layers):
            self.hidden[i] = self.lstm[i](h_in, self.hidden[i])
            h_in = self.hidden[i][0]
        mu = self.mu_net(h_in)
        logvar = self.logvar_net(h_in)
        z = self.reparameterize(mu, logvar)
        return z, mu, logvar

输出的是正态采样的z,以及均值和对数标准差。

Encoder / Decoder

以dcgan_64为例

if opt.model == 'dcgan':
    if opt.image_width == 64:
        import models.dcgan_64 as model

dcgan_64.py如下:

import torch
import torch.nn as nn

class dcgan_conv(nn.Module):
    def __init__(self, nin, nout):
        super(dcgan_conv, self).__init__()
        self.main = nn.Sequential(
                nn.Conv2d(nin, nout, 4, 2, 1),
                nn.BatchNorm2d(nout),
                nn.LeakyReLU(0.2, inplace=True),
                )

    def forward(self, input):
        return self.main(input)

class dcgan_upconv(nn.Module):
    def __init__(self, nin, nout):
        super(dcgan_upconv, self).__init__()
        self.main = nn.Sequential(
                nn.ConvTranspose2d(nin, nout, 4, 2, 1),
                nn.BatchNorm2d(nout),
                nn.LeakyReLU(0.2, inplace=True),
                )

    def forward(self, input):
        return self.main(input)

class encoder(nn.Module):
    def __init__(self, dim, nc=1):
        super(encoder, self).__init__()
        self.dim = dim
        nf = 64
        # input is (nc) x 64 x 64
        self.c1 = dcgan_conv(nc, nf)
        # state size. (nf) x 32 x 32
        self.c2 = dcgan_conv(nf, nf * 2)
        # state size. (nf*2) x 16 x 16
        self.c3 = dcgan_conv(nf * 2, nf * 4)
        # state size. (nf*4) x 8 x 8
        self.c4 = dcgan_conv(nf * 4, nf * 8)
        # state size. (nf*8) x 4 x 4
        self.c5 = nn.Sequential(
                nn.Conv2d(nf * 8, dim, 4, 1, 0),
                nn.BatchNorm2d(dim),
                nn.Tanh()
                )

    def forward(self, input):
        h1 = self.c1(input)
        h2 = self.c2(h1)
        h3 = self.c3(h2)
        h4 = self.c4(h3)
        h5 = self.c5(h4)
        return h5.view(-1, self.dim), [h1, h2, h3, h4]

encoder将每一层都输出了

class decoder(nn.Module):
    def __init__(self, dim, nc=1):
        super(decoder, self).__init__()
        self.dim = dim
        nf = 64
        self.upc1 = nn.Sequential(
                # input is Z, going into a convolution
                nn.ConvTranspose2d(dim, nf * 8, 4, 1, 0),
                nn.BatchNorm2d(nf * 8),
                nn.LeakyReLU(0.2, inplace=True)
                )
        # state size. (nf*8) x 4 x 4
        self.upc2 = dcgan_upconv(nf * 8 * 2, nf * 4)
        # state size. (nf*4) x 8 x 8
        self.upc3 = dcgan_upconv(nf * 4 * 2, nf * 2)
        # state size. (nf*2) x 16 x 16
        self.upc4 = dcgan_upconv(nf * 2 * 2, nf)
        # state size. (nf) x 32 x 32
        self.upc5 = nn.Sequential(
                nn.ConvTranspose2d(nf * 2, nc, 4, 2, 1),
                nn.Sigmoid()
                # state size. (nc) x 64 x 64
                )

    def forward(self, input):
        vec, skip = input 
        d1 = self.upc1(vec.view(-1, self.dim, 1, 1))
        d2 = self.upc2(torch.cat([d1, skip[3]], 1))
        d3 = self.upc3(torch.cat([d2, skip[2]], 1))
        d4 = self.upc4(torch.cat([d3, skip[1]], 1))
        output = self.upc5(torch.cat([d4, skip[0]], 1))
        return output

decoder的每一层和encoder的每一层连接起来。

Training Functions

def train(x):
    ...
    mse = 0
    kld = 0
    for i in range(1, opt.n_past+opt.n_future):
        h = encoder(x[i-1])
        h_target = encoder(x[i])[0]
        if opt.last_frame_skip or i < opt.n_past:   
            h, skip = h
        else:
            h = h[0]
        z_t, mu, logvar = posterior(h_target)
        _, mu_p, logvar_p = prior(h)
        h_pred = frame_predictor(torch.cat([h, z_t], 1))
        x_pred = decoder([h_pred, skip])
        mse += mse_criterion(x_pred, x[i])
        kld += kl_criterion(mu, logvar, mu_p, logvar_p)

    loss = mse + kld*opt.beta
    loss.backward()

    frame_predictor_optimizer.step()
    posterior_optimizer.step()
    prior_optimizer.step()
    encoder_optimizer.step()
    decoder_optimizer.step()


    return mse.data.cpu().numpy()/(opt.n_past+opt.n_future), kld.data.cpu().numpy()/(opt.n_future+opt.n_past)

在n_past之前每次更新skip。
从第n_past开始,将i的输出作为i+1的输入;并且每次均对目标帧进行解码采样。

for epoch in range(opt.niter):
    frame_predictor.train()
    posterior.train()
    prior.train()
    encoder.train()
    decoder.train()
    epoch_mse = 0
    epoch_kld = 0
    progress = progressbar.ProgressBar(max_value=opt.epoch_size).start()
    for i in range(opt.epoch_size):
        progress.update(i+1)
        x = next(training_batch_generator)

        # train frame_predictor 
        mse, kld = train(x)
        epoch_mse += mse
        epoch_kld += kld


    progress.finish()

.train(): Sets the module in training mode.

Predict

def make_gifs(x, idx):
    for s in range(nsample):
        progress.update(s+1)
        gen_seq = []
        gt_seq = []
        frame_predictor.hidden = frame_predictor.init_hidden()
        posterior.hidden = posterior.init_hidden()
        prior.hidden = prior.init_hidden()
        x_in = x[0]
        all_gen.append([])
        all_gen[s].append(x_in)
        for i in range(1, opt.n_eval):
            h = encoder(x_in)
            if opt.last_frame_skip or i < opt.n_past:   
                h, skip = h
            else:
                h, _ = h
            h = h.detach()
            if i + 1 < opt.n_past:
                h_target = encoder(x[i])[0].detach()
                z_t, _, _ = posterior(h_target)
            else:
                z_t, _, _ = prior(h)
            if i < opt.n_past:
                frame_predictor(torch.cat([h, z_t], 1))
                x_in = x[i]
                all_gen[s].append(x_in)
            else:
                h = frame_predictor(torch.cat([h, z_t], 1)).detach()
                x_in = decoder([h, skip]).detach()
                gen_seq.append(x_in.data.cpu().numpy())
                gt_seq.append(x[i].data.cpu().numpy())
                all_gen[s].append(x_in)
        _, ssim[:, s, :], psnr[:, s, :] = utils.eval_seq(gt_seq, gen_seq)

    progress.finish()

n_past及以后的图片都是未知的,因此从第n_past开始,将i的输出作为i+1的输入;从第n_past-1开始,从prior分布中根据输入采样。

相关文章

网友评论

      本文标题:Stochastic Video Generation

      本文链接:https://www.haomeiwen.com/subject/hiqbfftx.html