从网上各种资料加上自己实践的可用工具:
- 主要包括:
- 模型层数:print_layers_num
- 模型参数总量:print_model_parm_nums
- 模型的计算图:def print_autograd_graph():或者参见tensorboad
- 模型滤波器可视化:show_save_tensor
- 模型在具体的输入下的尺寸信息summary以及参数量:show_summary
- 模型计算量:print_model_parm_flops
格式较混乱,但上述代码均可用,后续会继续整理。
#coding:utf8
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
import torchvision.models as models
import numpy as np
def test():
model = models.resnet18()
print model.layer1[0].conv1.weight.data
print model.layer1[0].conv1.__class__#<class 'torch.nn.modules.conv.Conv2d'>
print model.layer1[0].conv1.kernel_size
input = torch.autograd.Variable(torch.randn(20, 16, 50, 100))
print input.size()
print np.prod(input.size())
def print_model_parm_nums():
model = models.alexnet()
total = sum([param.nelement() for param in model.parameters()])
print(' + Number of params: %.2fM' % (total / 1e6))
def print_model_parm_flops():
# prods = {}
# def save_prods(self, input, output):
# print 'flops:{}'.format(self.__class__.__name__)
# print 'input:{}'.format(input)
# print '_dim:{}'.format(input[0].dim())
# print 'input_shape:{}'.format(np.prod(input[0].shape))
# grads.append(np.prod(input[0].shape))
prods = {}
def save_hook(name):
def hook_per(self, input, output):
# print 'flops:{}'.format(self.__class__.__name__)
# print 'input:{}'.format(input)
# print '_dim:{}'.format(input[0].dim())
# print 'input_shape:{}'.format(np.prod(input[0].shape))
# prods.append(np.prod(input[0].shape))
prods[name] = np.prod(input[0].shape)
# prods.append(np.prod(input[0].shape))
return hook_per
list_1=[]
def simple_hook(self, input, output):
list_1.append(np.prod(input[0].shape))
list_2={}
def simple_hook2(self, input, output):
list_2['names'] = np.prod(input[0].shape)
multiply_adds = False
list_conv=[]
def conv_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_conv.append(flops)
list_linear=[]
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
list_bn=[]
def bn_hook(self, input, output):
list_bn.append(input[0].nelement())
list_relu=[]
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())
list_pooling=[]
def pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
# net.register_forward_hook(save_hook(net.__class__.__name__))
# net.register_forward_hook(simple_hook)
# net.register_forward_hook(simple_hook2)
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm2d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d):
net.register_forward_hook(pooling_hook)
return
for c in childrens:
foo(c)
resnet = models.alexnet()
foo(resnet)
input = Variable(torch.rand(3,224,224).unsqueeze(0), requires_grad = True)
out = resnet(input)
total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling))
print(' + Number of FLOPs: %.2fG' % (total_flops / 1e9))
# print list_bn
# print 'prods:{}'.format(prods)
# print 'list_1:{}'.format(list_1)
# print 'list_2:{}'.format(list_2)
# print 'list_final:{}'.format(list_final)
def print_forward():
model = torchvision.models.resnet18()
select_layer = model.layer1[0].conv1
grads={}
def save_grad(name):
def hook(self, input, output):
grads[name] = input
return hook
select_layer.register_forward_hook(save_grad('select_layer'))
input = Variable(torch.rand(3,224,224).unsqueeze(0), requires_grad = True)
out = model(input)
# print grads['select_layer']
print grads
def print_value():
grads = {}
def save_grad(name):
def hook(grad):
grads[name] = grad
return hook
x = Variable(torch.randn(1,1), requires_grad=True)
y = 3*x
z = y**2
# In here, save_grad('y') returns a hook (a function) that keeps 'y' as name
y.register_hook(save_grad('y'))
z.register_hook(save_grad('z'))
z.backward()
print 'HW'
print("grads['y']: {}".format(grads['y']))
print(grads['z'])
def print_layers_num():
# resnet = models.resnet18()
resnet = models.resnet18()
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
print ' '
#可以用来统计不同层的个数
# net.register_backward_hook(print)
return 1
count = 0
for c in childrens:
count += foo(c)
return count
print(foo(resnet))
def check_summary():
def torch_summarize(model, show_weights=True, show_parameters=True):
"""Summarizes torch model by showing trainable parameters and weights."""
from torch.nn.modules.module import _addindent
tmpstr = model.__class__.__name__ + ' (\n'
for key, module in model._modules.items():
# if it contains layers let call it recursively to get params and weights
if type(module) in [
torch.nn.modules.container.Container,
torch.nn.modules.container.Sequential
]:
modstr = torch_summarize(module)
else:
modstr = module.__repr__()
modstr = _addindent(modstr, 2)
params = sum([np.prod(p.size()) for p in module.parameters()])
weights = tuple([tuple(p.size()) for p in module.parameters()])
tmpstr += ' (' + key + '): ' + modstr
if show_weights:
tmpstr += ', weights={}'.format(weights)
if show_parameters:
tmpstr += ', parameters={}'.format(params)
tmpstr += '\n'
tmpstr = tmpstr + ')'
return tmpstr
# Test
import torchvision.models as models
model = models.alexnet()
print(torch_summarize(model))
#https://gist.github.com/wassname/0fb8f95e4272e6bdd27bd7df386716b7
#summarize a torch model like in keras, showing parameters and output shape
def show_summary():
from collections import OrderedDict
import pandas as pd
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
def get_names_dict(model):
"""
Recursive walk to get names including path
"""
names = {}
def _get_names(module, parent_name=''):
for key, module in module.named_children():
name = parent_name + '.' + key if parent_name else key
names[name]=module
if isinstance(module, torch.nn.Module):
_get_names(module, parent_name=name)
_get_names(model)
return names
def torch_summarize_df(input_size, model, weights=False, input_shape=True, nb_trainable=False):
"""
Summarizes torch model by showing trainable parameters and weights.
author: wassname
url: https://gist.github.com/wassname/0fb8f95e4272e6bdd27bd7df386716b7
license: MIT
Modified from:
- https://github.com/pytorch/pytorch/issues/2001#issuecomment-313735757
- https://gist.github.com/wassname/0fb8f95e4272e6bdd27bd7df386716b7/
Usage:
import torchvision.models as models
model = models.alexnet()
df = torch_summarize_df(input_size=(3, 224,224), model=model)
print(df)
# name class_name input_shape output_shape nb_params
# 1 features=>0 Conv2d (-1, 3, 224, 224) (-1, 64, 55, 55) 23296#(3*11*11+1)*64
# 2 features=>1 ReLU (-1, 64, 55, 55) (-1, 64, 55, 55) 0
# ...
"""
def register_hook(module):
def hook(module, input, output):
name = ''
for key, item in names.items():
if item == module:
name = key
#<class 'torch.nn.modules.conv.Conv2d'>
class_name = str(module.__class__).split('.')[-1].split("'")[0]
module_idx = len(summary)
m_key = module_idx + 1
summary[m_key] = OrderedDict()
summary[m_key]['name'] = name
summary[m_key]['class_name'] = class_name
if input_shape:
summary[m_key][
'input_shape'] = (-1, ) + tuple(input[0].size())[1:]
summary[m_key]['output_shape'] = (-1, ) + tuple(output.size())[1:]
if weights:
summary[m_key]['weights'] = list(
[tuple(p.size()) for p in module.parameters()])
# summary[m_key]['trainable'] = any([p.requires_grad for p in module.parameters()])
if nb_trainable:
params_trainable = sum([torch.LongTensor(list(p.size())).prod() for p in module.parameters() if p.requires_grad])
summary[m_key]['nb_trainable'] = params_trainable
params = sum([torch.LongTensor(list(p.size())).prod() for p in module.parameters()])
summary[m_key]['nb_params'] = params
if not isinstance(module, nn.Sequential) and \
not isinstance(module, nn.ModuleList) and \
not (module == model):
hooks.append(module.register_forward_hook(hook))
# Names are stored in parent and path+name is unique not the name
names = get_names_dict(model)
# check if there are multiple inputs to the network
if isinstance(input_size[0], (list, tuple)):
x = [Variable(torch.rand(1, *in_size)) for in_size in input_size]
else:
x = Variable(torch.rand(1, *input_size))
if next(model.parameters()).is_cuda:
x = x.cuda()
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
model(x)
# remove these hooks
for h in hooks:
h.remove()
# make dataframe
df_summary = pd.DataFrame.from_dict(summary, orient='index')
return df_summary
# Test on alexnet
import torchvision.models as models
model = models.alexnet()
df = torch_summarize_df(input_size=(3, 224, 224), model=model)
print(df)
# # Output
# name class_name input_shape output_shape nb_params
# 1 features=>0 Conv2d (-1, 3, 224, 224) (-1, 64, 55, 55) 23296#nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
# 2 features=>1 ReLU (-1, 64, 55, 55) (-1, 64, 55, 55) 0
# 3 features=>2 MaxPool2d (-1, 64, 55, 55) (-1, 64, 27, 27) 0
# 4 features=>3 Conv2d (-1, 64, 27, 27) (-1, 192, 27, 27) 307392
# 5 features=>4 ReLU (-1, 192, 27, 27) (-1, 192, 27, 27) 0
# 6 features=>5 MaxPool2d (-1, 192, 27, 27) (-1, 192, 13, 13) 0
# 7 features=>6 Conv2d (-1, 192, 13, 13) (-1, 384, 13, 13) 663936
# 8 features=>7 ReLU (-1, 384, 13, 13) (-1, 384, 13, 13) 0
# 9 features=>8 Conv2d (-1, 384, 13, 13) (-1, 256, 13, 13) 884992
# 10 features=>9 ReLU (-1, 256, 13, 13) (-1, 256, 13, 13) 0
# 11 features=>10 Conv2d (-1, 256, 13, 13) (-1, 256, 13, 13) 590080
# 12 features=>11 ReLU (-1, 256, 13, 13) (-1, 256, 13, 13) 0
# 13 features=>12 MaxPool2d (-1, 256, 13, 13) (-1, 256, 6, 6) 0
# 14 classifier=>0 Dropout (-1, 9216) (-1, 9216) 0
# 15 classifier=>1 Linear (-1, 9216) (-1, 4096) 37752832
# 16 classifier=>2 ReLU (-1, 4096) (-1, 4096) 0
# 17 classifier=>3 Dropout (-1, 4096) (-1, 4096) 0
# 18 classifier=>4 Linear (-1, 4096) (-1, 4096) 16781312
# 19 classifier=>5 ReLU (-1, 4096) (-1, 4096) 0
# 20 classifier=>6 Linear (-1, 4096) (-1, 1000) 4097000
def show_save_tensor():
import torch
from torchvision import utils
import torchvision.models as models
from matplotlib import pyplot as plt
def vis_tensor(tensor, ch = 0, all_kernels=False, nrow=8, padding = 2):
'''
ch: channel for visualization
allkernels: all kernels for visualization
'''
n,c,h,w = tensor.shape
if all_kernels:
tensor = tensor.view(n*c ,-1, w, h)
elif c != 3:
tensor = tensor[:, ch,:,:].unsqueeze(dim=1)
rows = np.min((tensor.shape[0]//nrow + 1, 64 ))
grid = utils.make_grid(tensor, nrow=nrow, normalize=True, padding=padding)
# plt.figure(figsize=(nrow,rows))
plt.imshow(grid.numpy().transpose((1, 2, 0)))#CHW HWC
def save_tensor(tensor, filename, ch=0, all_kernels=False, nrow=8, padding=2):
n,c,h,w = tensor.shape
if all_kernels:
tensor = tensor.view(n*c ,-1, w, h)
elif c != 3:
tensor = tensor[:, ch,:,:].unsqueeze(dim=1)
utils.save_image(tensor, filename, nrow = nrow,normalize=True, padding=padding)
vgg = models.resnet18(pretrained=True)
mm = vgg.double()
filters = mm.modules
body_model = [i for i in mm.children()][0]
# layer1 = body_model[0]
layer1 = body_model
tensor = layer1.weight.data.clone()
vis_tensor(tensor)
save_tensor(tensor,'test.png')
plt.axis('off')
plt.ioff()
plt.show()
def print_autograd_graph():
from graphviz import Digraph
import torch
from torch.autograd import Variable
def make_dot(var, params=None):
""" Produces Graphviz representation of PyTorch autograd graph
Blue nodes are the Variables that require grad, orange are Tensors
saved for backward in torch.autograd.Function
Args:
var: output Variable
params: dict of (name, Variable) to add names to node that
require grad (TODO: make optional)
"""
if params is not None:
#assert all(isinstance(p, Variable) for p in params.values())
param_map = {id(v): k for k, v in params.items()}
node_attr = dict(style='filled',
shape='box',
align='left',
fontsize='12',
ranksep='0.1',
height='0.2')
dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
seen = set()
def size_to_str(size):
return '('+(', ').join(['%d' % v for v in size])+')'
def add_nodes(var):
if var not in seen:
if torch.is_tensor(var):
dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
elif hasattr(var, 'variable'):
u = var.variable
#name = param_map[id(u)] if params is not None else ''
#node_name = '%s\n %s' % (name, size_to_str(u.size()))
node_name = '%s\n %s' % (param_map.get(id(u.data)), size_to_str(u.size()))
dot.node(str(id(var)), node_name, fillcolor='lightblue')
else:
dot.node(str(id(var)), str(type(var).__name__))
seen.add(var)
if hasattr(var, 'next_functions'):
for u in var.next_functions:
if u[0] is not None:
dot.edge(str(id(u[0])), str(id(var)))
add_nodes(u[0])
if hasattr(var, 'saved_tensors'):
for t in var.saved_tensors:
dot.edge(str(id(t)), str(id(var)))
add_nodes(t)
add_nodes(var.grad_fn)
return dot
from torchvision import models
torch.manual_seed(1)
inputs = torch.randn(1,3,224,224)
model = models.resnet18(pretrained=False)
y = model(Variable(inputs))
#print(y)
g = make_dot(y, params=model.state_dict())
g.view()
#g
if __name__=='__main__':
import fire
fire. Fire()
网友评论