一直有这个疑问,就查询了一下,国内好像没有找到,找到了外文,翻译一下。

Anomaly detection and outlier detection have the same meaning - except used in different contexts of observing data.
- Both refer to rare events
- Anomaly detection is often used when observing a rare event where
-- there is no doubt about the observation itself
-- but the event itself is not a “normal event”. Example of this is credit card fraud
- Outlier detection is often used to refer to a rare observation where
-- one may attribute to noise in the observation etc.
- these differences are quite fuzzy -one could consider calling fraud detection as an outlier event too.
Change point detection is quite different from anomaly detection/outliers. It refers to changes in time series data.
异常检测和离群点检测具有相同的含义,只是在观测数据的不同上下文中使用。
-
两者均指罕见事件
-
在观察罕见事件时,通常使用异常检测
-
这一观察结果本身是毫无疑问的
-
但该事件本身并非“正常事件”。信用卡欺诈就是一个例子
-
-
离群点检测通常用于指一种罕见的观察,其中
- 人们可能将其归因于观测中的噪音等。
-
这些差异相当模糊——我们也可以将欺诈检测称为离群点事件。
波动点检测与异常检测/异常值有很大不同。它指的是时间序列数据的变化。
搞一半天,我们搞AIOPS的异常检测,可能在时序数据上,主要指的是波动点异常检测吧。
网友评论