I、P、B 帧
- I 帧(Intra coded frames) : I 帧图像采用帧内编码方式,即只利用了单帧图像内的空间相关性,而没有利用时间相关性。I 帧使用帧内压缩,不使用运动补偿,由于 I 帧不依赖其它帧,所以是随机存取的入点,同时是解码的基准帧。I 帧主要用于接收机的初始化和信道的获取,以及节目的切换和插入,I 帧图像的压缩倍数相对较低。I 帧图像是周期性出现在图像序列中的,出现频率可由编码器选择。
- P 帧(Predicted frames) : P 帧和 B 帧图像采用帧间编码方式,即同时利用了空间和时间上的相关性。P 帧图像只采用前向时间预测,可以提高压缩效率和图像质量。P 帧图像中可以包含帧内编码的部分,即 P 帧中的每一个宏块可以是前向预测,也可以是帧内编码。
- B 帧(Bi-directional predicted frames) : B 帧图像采用双向时间预测,可以大大提高压缩倍数。值得注意的是,由于 B 帧图像采用了未来帧作为参考,因此 MPEG-2 编码码流中图像帧的传输顺序和显示顺序是不同的。
通过上述基本可以说明如果有 B frame 存在的情况下一个 GOP 的最后一个 frame 一定是 P。
这就带来一个问题:在视频流中,先到来的 B 帧无法立即解码,需要等待它依赖的后面的 I、P 帧先解码完成,这样一来播放时间与解码时间不一致了,顺序打乱了,那这些帧该如何播放呢?这时就需要我们来了解另外两个概念:DTS 和 PTS。
DTS、PTS
- DTS(Decoding Time Stamp):即解码时间戳,这个时间戳的意义在于告诉播放器该在什么时候解码这一帧的数据。
- PTS(Presentation Time Stamp):即显示时间戳,这个时间戳用来告诉播放器该在什么时候显示这一帧的数据。
虽然 DTS、PTS 是用于指导播放端的行为,但它们是在编码的时候由编码器生成的。
当视频流中没有 B 帧时,通常 DTS 和 PTS 的顺序是一致的。但如果有 B 帧时,就回到了我们前面说的问题:解码顺序和播放顺序不一致了。
比如一个视频中,帧的显示顺序是:I B B P,现在我们需要在解码 B 帧时知道 P 帧中信息,因此这几帧在视频流中的顺序可能是:I P B B,这时候就体现出每帧都有 DTS 和 PTS 的作用了。DTS 告诉我们该按什么顺序解码这几帧图像,PTS 告诉我们该按什么顺序显示这几帧图像。顺序大概如下:
PTS: 480 640 560 520 600 800 720 680 760 960 ...
DTS: 400 440 480 520 560 600 640 680 720 760 ...
Stream: I P B B B P B B B P ...
播放序: 1 5 3 2 4 9 7 6 8 10 ...
PTS >= DTS
音视频的同步
上面说了视频帧、DTS、PTS 相关的概念。我们都知道在一个媒体流中,除了视频以外,通常还包括音频。音频的播放,也有 DTS、PTS 的概念,但是音频没有类似视频中 B 帧,不需要双向预测,所以音频帧的 DTS、PTS 顺序是一致的。
音频视频混合在一起播放,就呈现了我们常常看到的广义的视频。在音视频一起播放的时候,我们通常需要面临一个问题:怎么去同步它们,以免出现画不对声的情况。
要实现音视频同步,通常需要选择一个参考时钟,参考时钟上的时间是线性递增的,编码音视频流时依据参考时钟上的时间给每帧数据打上时间戳。在播放时,读取数据帧上的时间戳,同时参考当前参考时钟上的时间来安排播放。这里的说的时间戳就是我们前面说的 PTS。实践中,我们可以选择:同步视频到音频、同步音频到视频、同步音频和视频到外部时钟。
PTS和DTS的时间基
时间基是FFmpeg中的概念,也就是time_base。它也是用来度量时间的。time_base是时间的基础刻度。例如,time_base={1,25} 表示把1秒分为25等份,每一份就是1/25秒,即time_base=1/25秒。 pts或者dts的值指的是占多少个这样的时间刻度time_base。
所以,pts*time_base就是帧的显示时间,dts*time_base就是帧的解码时间。
不同的封装格式,timebase是不一样的。常见的有:
flv:{1, 1000}
ts:{1, 90000}
mp4视频:{1, 25}、{1, 24}、{1,, 1000}等
mp4音频:{1, 44100}、{1, 48000}等
mkv:{1, 1000}等
网友评论