美文网首页
2.2展示数据Matpoltlib

2.2展示数据Matpoltlib

作者: d9e7e8498548 | 来源:发表于2019-11-21 21:30 被阅读0次

1. 基本使用

  • 基本用法
import matplotlib.pyplot as plt
plt.plot(x,y)
plt.show()
  • figure图像
plt.figure()
plt.plot(x, y2)
plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
plt.show()
  • 设置坐标轴
plt.xlim((-1, 2))
plt.ylim((-2, 3))
plt.xlabel('I am x')
plt.ylabel('I am y')
new_ticks = np.linspace(-1, 2, 5)
plt.xticks(new_ticks) # 
plt.show()

调整坐标轴

ax = plt.gca()
# 使用.spines设置边框:x轴
ax.spines['right'].set_color('none') 
ax.spines['top'].set_color('none')
#使用.set_position设置边框位置
ax.xaxis.set_ticks_position('bottom') # 设置x坐标刻度数字或名称的位置
ax.spines['bottom'].set_position(('data', 0))# 设置x轴边框在y=0的位置
ax.yaxis.set_ticks_position('left') # 设置y坐标刻度数字或名称的位置
ax.spines['left'].set_position(('data',0)) # 设置y轴边框在x=0的位置
plt.show()
  • 图例legend
# set line syles
l1, = plt.plot(x, y1, label='linear line') #以逗号结尾, 因为plt.plot() 返回的是一个列表
l2, = plt.plot(x, y2, color='red', linewidth=1.0, linestyle='--', label='square line')
plt.legend(loc='upper right')  # 图例将添加在图中的右上角
#plt.legend(handles=[l1, l2], labels=['up', 'down'],  loc='best')
  • 标注annotation
# annotation形式
plt.annotate(r'$2x+1=%s$' % y0, xy=(x0, y0), xycoords='data', xytext=(+30, -30),
             textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=.2"))

# text形式
plt.text(-3.7, 3, r'$This\ is\ the\ some\ text. \mu\ \sigma_i\ \alpha_t$',
         fontdict={'size': 16, 'color': 'r'})
  • 能见度tick
for label in ax.get_xticklabels() + ax.get_yticklabels():
    label.set_fontsize(12)
    # 在 plt 2.0.2 或更高的版本中, 设置 zorder 给 plot 在 z 轴方向排序
    label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.7, zorder=2))
plt.show()
  • 子图
fig= plt.figure()
ax1 = fig.add_subplot(2,2,1)
ax2 = fig.add_subplot(2,2,2)
ax3 = fig.add_subplot(2,2,3)
ax4 = fig.add_subplot(2,2,4)

2. 画图种类

  • 散点图Scatter
import matplotlib.pyplot as plt
import numpy as np

n = 1024    # data size
X = np.random.normal(0, 1, n) # 每一个点的X值
Y = np.random.normal(0, 1, n) # 每一个点的Y值
T = np.arctan2(Y,X) # for color value

plt.scatter(X, Y, s=75, c=T, alpha=.5)

plt.xlim(-1.5, 1.5)
plt.xticks(())  # ignore xticks
plt.ylim(-1.5, 1.5)
plt.yticks(())  # ignore yticks

plt.show()
  • 柱状图Bar
import matplotlib.pyplot as plt
import numpy as np

n = 12
X = np.arange(n)
Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)

plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')

for x, y in zip(X, Y1):
    # ha: horizontal alignment
    # va: vertical alignment
    plt.text(x + 0.4, y + 0.05, '%.2f' % y, ha='center', va='bottom')

for x, y in zip(X, Y2):
    # ha: horizontal alignment
    # va: vertical alignment
    plt.text(x + 0.4, -y - 0.05, '%.2f' % y, ha='center', va='top')

plt.xlim(-.5, n)
plt.xticks(())
plt.ylim(-1.25, 1.25)
plt.yticks(())

plt.show()
  • 等高线图Contours
import matplotlib.pyplot as plt
import numpy as np

def f(x,y):
    # the height function
    return (1 - x / 2 + x**5 + y**3) * np.exp(-x**2 -y**2)

n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X,Y = np.meshgrid(x, y)  # 在二维平面中将每一个x和每一个y分别对应起来,编织成栅格
# use plt.contourf to filling contours
# X, Y and value for (X,Y) point
plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap=plt.cm.hot)  #8代表等高线的密集程度
# use plt.contour to add contour lines
C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)
plt.clabel(C, inline=True, fontsize=10)

plt.xticks(())
plt.yticks(())
plt.show()
  • 3D数据
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 在窗口上添加3D坐标轴
fig = plt.figure()
ax = Axes3D(fig)

# X, Y value
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)    # x-y 平面的网格
R = np.sqrt(X ** 2 + Y ** 2)
# height value
Z = np.sin(R)

#做出一个三维曲面,并将一个 colormap rainbow 填充颜色
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'))
# 添加 XY 平面的等高线
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.get_cmap('rainbow'))

3. 多图合并显示

  • Subplot多合一显示
import matplotlib.pyplot as plt

plt.figure()
# 2行1列展示图形
plt.subplot(2,1,1)
plt.plot(x1,y1)
plt.subplot(2,1,2)
plt.plot(x2,y2)

plt.show() 
  • Subplot分格显示
    • method1:subplot2grid
import matplotlib.pyplot as plt

plt.figure()
ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)
ax1.plot([1, 2], [1, 2])    # 画小图
ax1.set_title('ax1_title')  # 设置小图的标题
ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)
ax4 = plt.subplot2grid((3, 3), (2, 0))
ax5 = plt.subplot2grid((3, 3), (2, 1))

ax4.scatter([1, 2], [2, 2])
ax4.set_xlabel('ax4_x')
ax4.set_ylabel('ax4_y')
  • method2:gridspec
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

plt.figure()
gs = gridspec.GridSpec(3, 3)

ax6 = plt.subplot(gs[0, :])
ax7 = plt.subplot(gs[1, :2])
ax8 = plt.subplot(gs[1:, 2])
ax9 = plt.subplot(gs[-1, 0])
ax10 = plt.subplot(gs[-1, -2])
  • 图中图
# 导入pyplot模块
import matplotlib.pyplot as plt

# 初始化figure
fig = plt.figure()

# 创建数据
x = [1, 2, 3, 4, 5, 6, 7]
y = [1, 3, 4, 2, 5, 8, 6]
# 确定大图左下角的位置以及宽高
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8  #4个值都是占整个figure坐标系的百分比
ax1 = fig.add_axes([left, bottom, width, height])
ax1.plot(x, y, 'r')
ax1.set_xlabel('x')
ax1.set_ylabel('y')
ax1.set_title('title')

left, bottom, width, height = 0.2, 0.6, 0.25, 0.25
ax2 = fig.add_axes([left, bottom, width, height])
ax2.plot(y, x, 'b')
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.set_title('title inside 1')

plt.axes([0.6, 0.2, 0.25, 0.25])
plt.plot(y[::-1], x, 'g') # 注意对y进行了逆序处理
plt.xlabel('x')
plt.ylabel('y')
plt.title('title inside 2')

plt.show()
  • 次坐标轴
mport matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 10, 0.1)
y1 = 0.05 * x**2
y2 = -1 * y1

# 获取figure默认的坐标系 ax1
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()  # 镜面效果后的ax2

ax1.plot(x, y1, 'g-')   # green, solid line
ax1.set_xlabel('X data')
ax1.set_ylabel('Y1 data', color='g')

ax2.plot(x, y2, 'b-') # blue
ax2.set_ylabel('Y2 data', color='b')

plt.show()

4. 动画Animation

from matplotlib import pyplot as plt
from matplotlib import animation
import numpy as np
fig, ax = plt.subplots()

x = np.arange(0, 2*np.pi, 0.01)
line, = ax.plot(x, np.sin(x))

# 构造自定义动画函数animate,用来更新每一帧上各个x对应的y坐标值,参数表示第i帧
def animate(i):
    line.set_ydata(np.sin(x + i/10.0))
    return line,

#构造开始帧函数init
def init():
    line.set_ydata(np.sin(x))
    return line,
# 调用FuncAnimation函数生成动画
ani = animation.FuncAnimation(fig=fig,
                              func=animate,
                              frames=100,
                              init_func=init,
                              interval=20,
                              blit=False)

plt.show()

参数说明:

  1. fig 进行动画绘制的figure
  2. func 自定义动画函数,即传入刚定义的函数animate
  3. frames 动画长度,一次循环包含的帧数
  4. init_func 自定义开始帧,即传入刚定义的函数init
  5. interval 更新频率,以ms计
  6. blit 选择更新所有点,还是仅更新产生变化的点。应选择True,但mac用户选择False,否则无法显示动画

相关文章

网友评论

      本文标题:2.2展示数据Matpoltlib

      本文链接:https://www.haomeiwen.com/subject/hprjcqtx.html