美文网首页
Aggregation

Aggregation

作者: 逸章 | 来源:发表于2020-07-17 11:42 被阅读0次

语法结构:



图片.png

例一

1、定义sports这个index的mapping

{
  "mappings": {
    "properties": {
      "birthdate": {
        "type": "date",
        "format": "dateOptionalTime"
      },
      "location": {
        "type": "geo_point"
      },
      "name": {
        "type": "keyword"
      },
      "rating": {
        "type": "integer"
      },
      "sport": {
        "type": "keyword"
      }
    }
  }
}
图片.png

2、通过BULK API插入数据

curl -H "Content-Type: application/json" -X POST http://localhost:9200/_bulk --data '
{"index":{"_index":"sports"}}
{"name":"Michael","birthdate":"1989-10-1","sport":"Baseball","rating":["5","4"],"location":"46.22,-68.45"}
{"index":{"_index":"sports"}}
{"name":"Bob","birthdate":"1989-11-2","sport":"Baseball","rating":["3","4"],"location":"45.21,-68.35"}
{"index":{"_index":"sports"}}
{"name":"Jim","birthdate":"1988-10-3","sport":"Baseball","rating":["3","2"],"location":"45.16,-63.58"}
{"index":{"_index":"sports"}}
{"name":"Joe","birthdate":"1992-5-20","sport":"Baseball","rating":["4","3"],"location":"45.22,-68.53"}
{"index":{"_index":"sports"}}
{"name":"Tim","birthdate":"1992-2-28","sport":"Baseball","rating":["3","3"],"location":"46.22,-68.85"}
{"index":{"_index":"sports"}}
{"name":"Alfred","birthdate":"1990-9-9","sport":"Baseball","rating":["2","2"],"location":"45.12,-68.35"}
{"index":{"_index":"sports"}}
{"name":"Jeff","birthdate":"1990-4-1","sport":"Baseball","rating":["2","3"],"location":"46.12,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Will","birthdate":"1988-3-1","sport":"Baseball","rating":["4","4"],"location":"46.25,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Mick","birthdate":"1989-10-1","sport":"Baseball","rating":["3","4"],"location":"46.22,-68.45"}
{"index":{"_index":"sports"}}
{"name":"Pong","birthdate":"1989-11-2","sport":"Baseball","rating":["1","3"],"location":"45.21,-68.35"}
{"index":{"_index":"sports"}}
{"name":"Ray","birthdate":"1988-10-3","sport":"Baseball","rating":["2","2"],"location":"45.16,-63.58"}
{"index":{"_index":"sports"}}
{"name":"Ping","birthdate":"1992-5-20","sport":"Baseball","rating":["4","3"],"location":"45.22,-68.53"}
{"index":{"_index":"sports"}}
{"name":"Duke","birthdate":"1992-2-28","sport":"Baseball","rating":["5","2"],"location":"46.22,-68.85"}
{"index":{"_index":"sports"}}
{"name":"Hal","birthdate":"1990-9-9","sport":"Baseball","rating":["4","2"],"location":"45.12,-68.35"}
{"index":{"_index":"sports"}}
{"name":"Charge","birthdate":"1990-4-1","sport":"Baseball","rating":["3","2"],"location":"46.12,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Barry","birthdate":"1988-3-1","sport":"Baseball","rating":["5","2"],"location":"46.25,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Bank","birthdate":"1988-3-1","sport":"Golf","rating":["6","4"],"location":"46.25,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Bingo","birthdate":"1988-3-1","sport":"Golf","rating":["10","7"],"location":"46.25,-68.55"}
{"index":{"_index":"sports"}}
{"name":"James","birthdate":"1988-3-1","sport":"Basketball","rating":["10","8"],"location":"46.25,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Wayne","birthdate":"1988-3-1","sport":"Hockey","rating":["10","10"],"location":"46.25,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Brady","birthdate":"1988-3-1","sport":"Football","rating":["10","10"],"location":"46.25,-68.55"}
{"index":{"_index":"sports"}}
{"name":"Lewis","birthdate":"1988-3-1","sport":"Football","rating":["10","10"],"location":"46.25,-68.55"}
'
用post演示如下: 图片.png

3、确认插入了多少条数据(应当22条)

yay@yay-ThinkPad-T470-W10DG:~$ curl -XGET http://localhost:9200/sports/_count
{"count":22,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0}}
yay@yay-ThinkPad-T470-W10DG:~$ 

4、做聚合运算

4.1 按照name做聚合,求score的均值

{
    "size": 0,
    "aggregations": {
        "the_name": {
            "terms": {
                "field": "name",
                "order": {
                    "rating_avg": "desc"
                }
            },
            "aggregations": {
                "rating_avg": {
                    "avg": {
                        "field": "rating"
                    }
                }
            }
        }
    }
}
图片.png

4.2 在聚合中使用script脚本生成聚合所使用的值

比如统计30-31间的有几个人

GET sports/_search
{
  "size": 0,
  "aggs": {
    "age_range": {
      "range": {
        "script": {
          "source": 
            """
            ZonedDateTime dob = doc['birthdate'].value;
            return params.now - dob.getYear()
            """
            ,
          "params": {
            "now": 2019
          }
        },
        "ranges": [
          {
            "from": 30,
            "to": 31
          }
        ]
      }
    }
  }
}
图片.png

二、Metric Aggregations(指标聚合)

图片.png

2.1 value_count聚合

指定字段有值的文档中该字段值的个数(有些稳定该字段是个数组)

GET sports/_search
{
  "size": 0,
  "aggs": {
    "sport_count": {
      "value_count": {
        "field": "rating"
      }
    }
  }
}
图片.png

三、Bucket Aggregations(存储桶聚合)

存储桶聚合是用于对文档进行分组的机制。 每种类型的存储桶聚合都有自己的分割文档集的方法。 也许最简单的类型是term聚合。 这个功能返回给定字段索引的唯一term以及匹配文档的数量。

3.1 Term Aggregation

GET sports/_search
{
  "size": 0,
  "aggs": {
    "sport": {
      "terms": {
        "field": "sport",
        "size": 10
      }
    }
  }
}
图片.png

3.2 geo相关

3.2.1 geo_distance聚合

在最简单的情况下,它取一个原点和一个距离范围,然后根据给定的geo_point字段计算圆中有多少文档。

GET sports/_search
{
  "size": 0,
  "aggregations": {
    "baseball_player_ring": {
      "geo_distance": {
        "field": "location",
        "origin": "46.12,-68.55",
        "unit": "mi",
        "ranges": [
          {
            "from": 0,
            "to": 20
          }
        ]
      }
    }
  }
}
图片.png

3.2.2 geohash_grid聚合

GET sports/_search
{
  "size": 0,
   "aggregations": {
        "large-grid": {
            "geohash_grid": {
                "field": "location",
                "precision": 3
            }
        }
    }
}
图片.png

3.3 内嵌 Bucket Aggregations

我们可以使用按年龄划分的嵌套范围聚合(根据脚本的“出生日期”计算得出)来进一步细分geo_distance聚合的结果。 假设我们想知道属于两个年龄段的每个运动员中有多少运动员(他们生活在上一节中定义的圈子内)

GET sports/_search
{
   "size": 0,
   "aggregations": {
      "baseball_player_ring": {
         "geo_distance": {
            "field": "location",
            "origin": "46.12,-68.55",
            "unit": "mi",
            "ranges": [
               {
                  "from": 0,
                  "to": 20
               }
            ]
         },
         "aggregations": {
            "ring_age_ranges": {
               "range": {
                 "script": {
                    "source": 
                    """
                    ZonedDateTime dob = doc['birthdate'].value;
                    return params.now - dob.getYear()
                    """
                    ,
                  "params": {
                    "now": 2019
                  }                 
                 }, 
                  "ranges": [
                      { "from": 30, "to": 31 },
                      { "from": 31, "to": 32 }
                  ]
               }
            }
         }
      }
   }
}
图片.png

3.4 多值指标汇总器

使用stats(多值指标汇总器)来计算最内部结果的一些统计数据。 对于居住在我们圈子中的运动员以及两个年龄段的每个年龄段,我们现在都希望根据结果文档计算“rating”字段的统计信息:

GET sports/_search
{
   "size": 0,
   "aggregations": {
      "baseball_player_ring": {
         "geo_distance": {
            "field": "location",
            "origin": "46.12,-68.55",
            "unit": "mi",
            "ranges": [
               {
                  "from": 0,
                  "to": 20
               }
            ]
         },
         "aggregations": {
            "ring_age_ranges": {
               "range": {
                 "script": {
                    "source": 
                    """
                    ZonedDateTime dob = doc['birthdate'].value;
                    return params.now - dob.getYear()
                    """
                  ,
                  "params": {
                    "now": 2019
                  }                 
                 }, 
                  "ranges": [
                      { "from": 30, "to": 31 },
                      { "from": 31, "to": 32 }
                  ]
               },
              "aggregations": {
                "rating_stats": {
                  "stats": {
                      "field": "rating"
                    }
                }
              }
            }
         }
      }
   }
}
图片.png

3.5 significant terms聚合

这些聚合旨在搜索数据集中有趣和/或不寻常(uncommonly common)的术语,这些术语可以告诉您有关数据的隐藏属性的更多信息: 图片.png

Once you start using significant_terms , you find many situations where you don’t want the most popular—you want the most uncommonly common(不寻常). This simple aggregation can uncover
some surprisingly sophisticated trends in your data.

比如针对一部不错的电影,我还要找出其他类似的符合我口味的电影,方法是找出有哪些人推荐了这部电影,然后找出这些人推荐的所有电影中推荐次数最高的前几个

例一

定义index的mappings

PUT news
{
  "mappings": {
    "properties": {
      "published": {
        "type": "date",
        "format": "dateOptionalTime"
      },
      "author": {
        "type": "keyword"
      },
      "title": {
        "type": "text"
      },
      "topic": {
        "type": "keyword"
      },
      "views": {
        "type": "integer"
      }
    }
  }
}

关键字字段只能按其确切值进行搜索,而文本字段可用于全文搜索。

批量插入测试数据

POST news/_bulk
{"index":{"_index":"news"}}
{"author":"John Michael","published":"2018-07-08","title":"Tesla is flirting with its lowest close in over 1 1/2 years (TSLA)","topic":"automobile","views":"431"}
{"index":{"_index":"news"}}
{"author":"John Michael","published":"2018-07-22","title":"Tesla to end up like Lehman Brothers (TSLA)","topic":"automobile","views":"1921"}
{"index":{"_index":"news"}}
{"author":"John Michael","published":"2018-07-29","title":"Tesla (TSLA) official says that they are going to release a new self-driving car model in the coming year","topic":"automobile","views":"1849"}
{"index":{"_index":"news"}}
{"author":"John Michael","published":"2018-08-14","title":"Five ways Tesla uses AI and Big Data","topic":"ai","views":"871"}
{"index":{"_index":"news"}}
{"author":"John Michael","published":"2018-08-14","title":"Toyota partners with Tesla (TSLA) to improve the security of self-driving cars","topic":"automobile","views":"871"}
{"index":{"_index":"news"}}
{"author":"Robert Cann","published":"2018-08-25","title":"Is AI dangerous for humanity","topic":"ai","views":"981"}
{"index":{"_index":"news"}}
{"author":"Robert Cann","published":"2018-09-13","title":"Is AI dangerous for humanity","topic":"ai","views":"871"}
{"index":{"_index":"news"}}
{"author":"Robert Cann","published":"2018-09-27","title":"Introduction to Generative Adversarial Networks (GANs) in self-driving cars","topic":"automobile","views":"1183"}
{"index":{"_index":"news"}}
{"author":"Robert Cann","published":"2018-10-09","title":"Introduction to Natural Language Processing","topic":"ai","views":"786"}
{"index":{"_index":"news"}}
{"author":"Robert Cann","published":"2018-10-15","title":"New Distant Objects Found in the Fight for Planet X ","topic":"astronomy","views":"542"}

使用significant term查询
A.下面尝试在索引中查找每个author的重要topics

GET news/_search
{
  "size": 0,
  "aggregations": {
    "authors": {
      "terms": {
        "field": "author"
      },
      "aggregations": {
        "significant_topic_types": {
          "significant_terms": {
            "field": "topic"
          }
        }
      }
    }
  }
}
图片.png
B.尝试查找特定author的重要topics
GET news/_search
{
  "size": 0, 
  "query": {
    "term": {
      "author": "John Michael"
    }
  },
  "aggregations": {
    "significant_topics": {
      "significant_terms": {
        "field": "topic"
      }
    }
  }
}
图片.png

3.6 significant text聚合

针对significant text aggregation,基本它和significant terms aggregation非常相似,只是它作用于一个text字段而不是一个keyword字段

GET news/_search
{
  "size": 0, 
  "query": {
    "match": {
      "title": "Tesla ai"
    }
  },
  "aggregations": {
    "significant_topics": {
      "significant_text": {
        "field": "topic"
      }
    }
  }
}
图片.png

相关文章

网友评论

      本文标题:Aggregation

      本文链接:https://www.haomeiwen.com/subject/hrvxkktx.html