./redis-server 启动的第一个参数就得带上配置文件
./redis-server /path/to/redis.conf
配置文件中的单位换算规则,
k已1000为单位换算,kb则是准确的1024换算,大小写不敏感。
1k => 1000 bytes
1kb => 1024 bytes
1m => 1000000 bytes
1mb => 10241024 bytes
1g => 1000000000 bytes
1gb => 10241024*1024 bytes
多个配置文件引用
redis也支持配置文件的引用。主要是用于“多态”,基础配置文件用于通用,再针对个别服务器配置单独的文件被基础配置文件引用。
注意:命令config rewrite xxxx 是在改写redis.conf不会涉及到被引用的文件。而redis读取配置生效的依据是同样的命令,最后一个有效。所以当你希望被引入的配置文件总是有效时,就将其放在文件最后。反之,放在文件最前面。
include /path/to/local.conf
include /path/to/other.conf
额外模块(module)
增强模块的加载在server启动时,如果不能成功加载,忽略。
include /path/to/local.conf
include /path/to/other.conf
网络
bind 指令
需要明确的是,bind指令配置的是该redis server 监听的网卡的地址,如果不配置,或者配置成 bind 0.0.0.0 ,表示监听所有网卡。redis默认给的配置是bind 127.0.0.1,意味着只有本机能访问。
bind 192.168.1.100 10.0.0.1
bind 127.0.0.1 ::1
protected-mode 指令
默认开启,在开启时,如果以下任一条件满足,则禁止外网ip访问。
1.没有明确的bind到一个网卡
2.没有启用访问密码。
protect-mode yes
port 指令
默认6379,如果设置为0,不监听任何tcp接口。
port 6379
tcp-backlog 指令
客户端准备好被接入的等待队列的大小。默认值如下。
因为linux 内核本身会按照/proc/sys/net/core/somaxconn的配置自动丢弃超过队列大小的待接入client,所以,需要同时提高linux本身的配置somaxconn 和 tcp_max_syn_backlog才有效
https://blog.csdn.net/chuixue24/article/details/80486866
tcp-backlog 511
unixsocket 指令
用于IPC(inter process commication),默认没有开启
unixsocket /tmp/redis.sock
unixsocketperm 700
timeout 指令
client idle一定时间后将其关闭,默认0,表示关闭此功能(应该是无指令发送?)
timeout 0
TCP keepalive.
tcp协议自带的维持连接的心跳间隔
tcp-keepalive 300
通用
配置指令 | 意义 | 示例 |
---|---|---|
daemonize | 默认redis并不会在linux上以daemon模式运行。开启后会写/var/run/redis.conf文件,用于单实例验证。 | daemonize no |
supervised | ???? | supervised no |
pidfile | 指定redis以守护进程启动时,要写的pid文件,默认是/var/run/redis.conf,如果不能创建,也不会影响redis的启动和运行 | pidfile /var/run/redis_6379.pid |
loglevel | 从低到高debug,verbose,notice,warning 线上推荐notice | loglevel notice |
logfile | 日志输送的地方,如果是空字符串,默认输出到标准输出流2,比如在控制台启动的,则输出到控制台。如果以daemonize运行,又没有指定日志,则到/dev/null | logfile "" |
syslog-enabled | 将日志打印到system logger | syslog-enabled no |
syslog-ident | Specify the syslog identity | syslog-ident redis |
syslog-facility | ?????? | syslog-facility local0 |
databases | https://stackoverflow.com/questions/16221563/whats-the-point-of-multiple-redis-databases | databases 16 |
always-show-log | 打印那个酷炫的logo | always-show-log yes |
快照相关配置
配置指令 | 意义 | 示例 |
---|---|---|
save <seconds> <changes> | 多少秒后,至少N次修改请求后,执行快照存储RDB 注释掉所有save指令,则不执行持久化,在运行时也可以通过配置save "" ,来关掉持久化 |
save 900 1 save 300 10 save 60 10000 |
stop-writes-on-bgsave-error | 当rdb持久化开启时,如果bgsave失败了,redis会拒绝client端的写入,用硬核方式提醒。但是如果考虑做了其他有效监控,不希望redis用这种方式报警,可以关闭 | stop-writes-on-bgsave-error yes |
rdbcompression | 压缩存储文件,通常应总设置为yes,除非想在存储时节省cpu资源 | rdbcompression yes |
rdbchecksum | 从version 5开始rdb会在存储加载时做CRC64校验,可以更好的验证文件内容,但是会降低10%性能 | rdbchecksum yes |
dbfilename | rdb快照默认输出文件,dump.rdb | dbfilename dump.rdb |
dir | redis的工作目录,默认当前文件夹。注意此配置应该是目录。dbfilename也在此文件夹下 | dir ./ |
集群相关配置(REPLICATION)
配置指令 | 意义 | 示例 |
---|---|---|
slaveof <masterip> <masterport> | 主从同步,此配置用于表明该server是某个server的slave | slaveof 192.168.1.212 6379 |
masterauth <master-password> | 如果master有秘密 | |
slave-serve-stale-data | slave数据库是否在正在同步或断开时,响应客户端,默认yes | slave-serve-stale-data yes |
slave-read-only | slave server是否只接受读请求,默认yes.感觉永远也别用这功能为好 | slave-read-only yes |
repl-diskless-sync | 主从全量复制时是否通过纯socket方式运行,该功能还在experimental阶段(4.0),速度更快,每次同步masterserver都等待一段时间,以尽量同步多的slave server | repl-diskless-sync no |
repl-diskless-sync-delay | 无盘复制的时候,默认延迟5s | repl-diskless-sync-delay 5 |
repl-ping-slave-period | slave ping的心跳周期,默认10s | repl-ping-slave-period 10 |
repl-timeout | 集群判定超时的时间,60s默认,这个时间应该大于repl-ping-slave-period | repl-timeout 60 |
repl-disable-tcp-nodelay | 开启时,redis会用更小的带宽去做主从同步,但是最高会有40ms延迟,适用于主从server带宽不够时,默认自然是关闭的 | repl-disable-tcp-nodelay no |
repl-backlog-size | 部分同步的时候,master缓存指令的buffer大小,越大,主从失联导致的全量复制可能就越低 | repl-backlog-size 1mb |
repl-backlog-ttl | 主server和从server 失联超过此时间后,释放主server的缓存 从server是不会释放backlog的,因为它需要用里面的数据来跟master重连确认同步到哪儿了 |
repl-backlog-ttl 3600 |
slave-priority 100 | 用于sentinel选新的mater server,越小优先级越高。这个不应该搞一个zxid最大的选举什么的么? | |
min-slaves-to-write | 小于X台slave连接后,master停止写服务 | 默认关闭 |
min-slaves-max-lag | 上面这个台数失联后,可容忍的时间 | |
slave-announce-ip | 强制配置告诉master自己的IP,不考虑NAT情况 | slave-announce-ip 5.5.5.5 |
slave-announce-port | 强制配置告诉master自己的PORT,不考虑NAT情况 | slave-announce-port 1234 |
5.5.5.5
安全相关配置
如果密码不够强,就最好别用,因为redis的读取速度极快,很容易被破解
requirepass xxxxx
命令改别名
rename-command CONFIG ""
客户端相关配置
默认最大socket连接10000/或者系统允许的最大数。如果超过,丢出错误信息 max number of clients reached
maxclients 10000""
内存管理
redis可以设置使用内存的最大值,配合回收策略。todo
maxmemory-policy noeviction
maxmemory-samples 5
懒释放/延期删除(lazy freeing)
可以通过配置,将一些server端删除行为改为同步或者异步 //todo
lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
slave-lazy-flush no
APPEND ONLY MODE (AOF持久化)
AOF默认不开启,值得注意的是,aof和rdb其实是可以同时开启的,并不冲突。如果2者皆有,AOF文件会被优先选择,因为其保存的信息更多。
appendonly no
appendfilename "appendonly.aof"
默认调用fsync()的评率是 everysec,每秒一次.参考:http://antirez.com/post/redis-persistence-demystified.html
appendfsync always
appendfsync everysec
appendfsync no
???
no-appendfsync-on-rewrite no
设置redis重写aof的最小size和阈值比例,默认100%
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
是否接受加载未被完全序列化的aof文件(屁股被截断了的),默认yes.注意是尾部被截断的情况,如果aof是中间的数据出现错误,任然会导致error。
aof-load-truncated yes
???//todo
aof-use-rdb-preamble no
LUA脚本
SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
lua-time-limit 5000
redis 集群(redis cluster)
普通的redis server是不能被集群化的。必须从一开始就配置为集群的一个节点才行。
指令名 | 意义 | 示例 |
---|---|---|
cluster-enabled | 启动集群 | cluster-enabled yes |
cluster-config-file | 集群节点自动创建,修改的文件,不要手动修改 | cluster-config-file nodes-6379.conf |
cluster-node-timeout | 节点失联认定时间,单位毫秒大多数其他内部时间限制都是基于此配置的倍数 | cluster-node-timeout 15000 |
cluster-slave-validity-factor | 从节点允许可能成为master节点的时间阈值=(node-timeout * slave-validity-factor) + repl-ping-slave-period 此阈值越大,从server就允许越旧的数据存在,当为0的时候,任何slave server都可能成为master |
cluster-slave-validity-factor 10 |
cluster-migration-barrier | 集群的“富余”slave允许分给其他孤儿master,master至少还有x+1台slave,则可分给孤儿一台slave,如果低于此数量,决绝。默认为1.既只有自己有2台slave,才能给孤儿master一台。https://blog.csdn.net/u011535541/article/details/78625330 | cluster-migration-barrier 1 |
cluster-require-full-coverage | 当集群的某些slot未被覆盖,既master-slave节点全挂了。是否允许集群继续对外服务。默认不行 | cluster-require-full-coverage yes |
cluster-slave-no-failover no | 如果此server是slave,阻止其自动成为master(没看明白使用场景),默认自然是no | cluster-slave-no-failover no |
集群对docker/nat的支持 CLUSTER DOCKER/NAT support
todo?
cluster-announce-ip 10.1.1.5
cluster-announce-port 6379
cluster-announce-bus-port 6380
慢日志SLOW LOG
慢日志的时间并未包括对应的I/O操作(客户端连接,应答,回写),而是事实的操作时间
命令 | 意义 | demo |
---|---|---|
slowlog-log-slower-than 10000 | 单位是微秒,所以默认慢于10毫秒的都会被认为是慢,被记录 | slowlog-log-slower-than 10000 |
slowlog-max-len 128 | 等待被IO进文件的slow command的队列长度,虽然数字可以任意设置,但是注意这个队列是要占用内存的,SLOWLOG RESET可以清空这个队列 | slowlog-max-len 128 |
????todo LATENCY MONITOR
latency-monitor-threshold 0
事件通知?todo
notify-keyspace-events ""
############################### ADVANCED CONFIG ###############################
Hashes are encoded using a memory efficient data structure when they have a
small number of entries, and the biggest entry does not exceed a given
threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
Lists are also encoded in a special way to save a lot of space.
The number of entries allowed per internal list node can be specified
as a fixed maximum size or a maximum number of elements.
For a fixed maximum size, use -5 through -1, meaning:
-5: max size: 64 Kb <-- not recommended for normal workloads
-4: max size: 32 Kb <-- not recommended
-3: max size: 16 Kb <-- probably not recommended
-2: max size: 8 Kb <-- good
-1: max size: 4 Kb <-- good
Positive numbers mean store up to exactly that number of elements
per list node.
The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
but if your use case is unique, adjust the settings as necessary.
list-max-ziplist-size -2
Lists may also be compressed.
Compress depth is the number of quicklist ziplist nodes from each side of
the list to exclude from compression. The head and tail of the list
are always uncompressed for fast push/pop operations. Settings are:
0: disable all list compression
1: depth 1 means "don't start compressing until after 1 node into the list,
going from either the head or tail"
So: [head]->node->node->...->node->[tail]
[head], [tail] will always be uncompressed; inner nodes will compress.
2: [head]->[next]->node->node->...->node->[prev]->[tail]
2 here means: don't compress head or head->next or tail->prev or tail,
but compress all nodes between them.
3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
etc.
list-compress-depth 0
Sets have a special encoding in just one case: when a set is composed
of just strings that happen to be integers in radix 10 in the range
of 64 bit signed integers.
The following configuration setting sets the limit in the size of the
set in order to use this special memory saving encoding.
set-max-intset-entries 512
Similarly to hashes and lists, sorted sets are also specially encoded in
order to save a lot of space. This encoding is only used when the length and
elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
HyperLogLog sparse representation bytes limit. The limit includes the
16 bytes header. When an HyperLogLog using the sparse representation crosses
this limit, it is converted into the dense representation.
A value greater than 16000 is totally useless, since at that point the
dense representation is more memory efficient.
The suggested value is ~ 3000 in order to have the benefits of
the space efficient encoding without slowing down too much PFADD,
which is O(N) with the sparse encoding. The value can be raised to
~ 10000 when CPU is not a concern, but space is, and the data set is
composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
hll-sparse-max-bytes 3000
Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
order to help rehashing the main Redis hash table (the one mapping top-level
keys to values). The hash table implementation Redis uses (see dict.c)
performs a lazy rehashing: the more operation you run into a hash table
that is rehashing, the more rehashing "steps" are performed, so if the
server is idle the rehashing is never complete and some more memory is used
by the hash table.
The default is to use this millisecond 10 times every second in order to
actively rehash the main dictionaries, freeing memory when possible.
If unsure:
use "activerehashing no" if you have hard latency requirements and it is
not a good thing in your environment that Redis can reply from time to time
to queries with 2 milliseconds delay.
use "activerehashing yes" if you don't have such hard requirements but
want to free memory asap when possible.
activerehashing yes
The client output buffer limits can be used to force disconnection of clients
that are not reading data from the server fast enough for some reason (a
common reason is that a Pub/Sub client can't consume messages as fast as the
publisher can produce them).
The limit can be set differently for the three different classes of clients:
normal -> normal clients including MONITOR clients
slave -> slave clients
pubsub -> clients subscribed to at least one pubsub channel or pattern
The syntax of every client-output-buffer-limit directive is the following:
client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
A client is immediately disconnected once the hard limit is reached, or if
the soft limit is reached and remains reached for the specified number of
seconds (continuously).
So for instance if the hard limit is 32 megabytes and the soft limit is
16 megabytes / 10 seconds, the client will get disconnected immediately
if the size of the output buffers reach 32 megabytes, but will also get
disconnected if the client reaches 16 megabytes and continuously overcomes
the limit for 10 seconds.
By default normal clients are not limited because they don't receive data
without asking (in a push way), but just after a request, so only
asynchronous clients may create a scenario where data is requested faster
than it can read.
Instead there is a default limit for pubsub and slave clients, since
subscribers and slaves receive data in a push fashion.
Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60
Client query buffers accumulate new commands. They are limited to a fixed
amount by default in order to avoid that a protocol desynchronization (for
instance due to a bug in the client) will lead to unbound memory usage in
the query buffer. However you can configure it here if you have very special
needs, such us huge multi/exec requests or alike.
client-query-buffer-limit 1gb
In the Redis protocol, bulk requests, that are, elements representing single
strings, are normally limited ot 512 mb. However you can change this limit
here.
proto-max-bulk-len 512mb
Redis calls an internal function to perform many background tasks, like
closing connections of clients in timeout, purging expired keys that are
never requested, and so forth.
Not all tasks are performed with the same frequency, but Redis checks for
tasks to perform according to the specified "hz" value.
By default "hz" is set to 10. Raising the value will use more CPU when
Redis is idle, but at the same time will make Redis more responsive when
there are many keys expiring at the same time, and timeouts may be
handled with more precision.
The range is between 1 and 500, however a value over 100 is usually not
a good idea. Most users should use the default of 10 and raise this up to
100 only in environments where very low latency is required.
hz 10
When a child rewrites the AOF file, if the following option is enabled
the file will be fsync-ed every 32 MB of data generated. This is useful
in order to commit the file to the disk more incrementally and avoid
big latency spikes.
aof-rewrite-incremental-fsync yes
Redis LFU eviction (see maxmemory setting) can be tuned. However it is a good
idea to start with the default settings and only change them after investigating
how to improve the performances and how the keys LFU change over time, which
is possible to inspect via the OBJECT FREQ command.
There are two tunable parameters in the Redis LFU implementation: the
counter logarithm factor and the counter decay time. It is important to
understand what the two parameters mean before changing them.
The LFU counter is just 8 bits per key, it's maximum value is 255, so Redis
uses a probabilistic increment with logarithmic behavior. Given the value
of the old counter, when a key is accessed, the counter is incremented in
this way:
1. A random number R between 0 and 1 is extracted.
2. A probability P is calculated as 1/(old_value*lfu_log_factor+1).
3. The counter is incremented only if R < P.
The default lfu-log-factor is 10. This is a table of how the frequency
counter changes with a different number of accesses with different
logarithmic factors:
+--------+------------+------------+------------+------------+------------+
| factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
+--------+------------+------------+------------+------------+------------+
| 0 | 104 | 255 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 1 | 18 | 49 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 10 | 10 | 18 | 142 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 100 | 8 | 11 | 49 | 143 | 255 |
+--------+------------+------------+------------+------------+------------+
NOTE: The above table was obtained by running the following commands:
redis-benchmark -n 1000000 incr foo
redis-cli object freq foo
NOTE 2: The counter initial value is 5 in order to give new objects a chance
to accumulate hits.
The counter decay time is the time, in minutes, that must elapse in order
for the key counter to be divided by two (or decremented if it has a value
less <= 10).
The default value for the lfu-decay-time is 1. A Special value of 0 means to
decay the counter every time it happens to be scanned.
lfu-log-factor 10
lfu-decay-time 1
########################### ACTIVE DEFRAGMENTATION #######################
网友评论