美文网首页
iOS 大部分的加密与解密

iOS 大部分的加密与解密

作者: Dylan_Yu | 来源:发表于2021-02-22 15:16 被阅读0次

    好久没有写简书了。一直在懒惰着。

    最近新项目涉及了加密。而且是繁琐 嵌套的加密。仔细了研究了好久。在这里总结一下。

    现在市面上大多数的加密,简单来说 base64,AES128,AES256,MD5,Salt,HMAC,Sha256。

    首先说一下Base64.
    iOS端有自己原生的base64加密。

    • NSdata
    [NSData alloc]initWithBase64EncodedData:<#(nonnull NSData *)#> options:<#(NSDataBase64DecodingOptions)#>
    
    • NSString
    [NSData alloc]initWithBase64EncodedData:<#(nonnull NSData *)#> options:<#(NSDataBase64DecodingOptions)#>
    

    AES分为AES128 和 AES256,AES128他是需要iv 和key 去生成一个新的data。AES256 只需要一个key

    • AES128
    - (NSData *)AES128Operation:(CCOperation)operation key:(NSData *)key iv:(NSData *)iv
    {
        NSUInteger dataLength = [self length];
        size_t bufferSize = dataLength + kCCBlockSizeAES128;
        void *buffer = malloc(bufferSize);
        size_t numBytesCrypted = 0;
        CCCryptorStatus cryptStatus = CCCrypt(operation,
                                              kCCAlgorithmAES128,
                                              kCCModeCTR,
                                              key.bytes,
                                              kCCBlockSizeAES128,
                                              iv.bytes,
                                              [self bytes],
                                              dataLength,
                                              buffer,
                                              bufferSize,
                                              &numBytesCrypted);
        if (cryptStatus == kCCSuccess) {
            return [NSData dataWithBytesNoCopy:buffer length:numBytesCrypted];
        }
        free(buffer);
        return nil;
    }
    - CCOperation 是一个枚举  
    ```objc 
    enum {
        kCCEncrypt = 0,
        kCCDecrypt,
    };
    typedef uint32_t CCOperation;
    
    • AES256
    - (NSData *) AES256EncryptedDataUsingKey: (id) key error: (NSError **) error
    {
        CCCryptorStatus status = kCCSuccess;
        NSData * result = [self dataEncryptedUsingAlgorithm: kCCAlgorithmAES128
                                                      key: key
                                                  options: kCCOptionECBMode|kCCOptionPKCS7Padding
                                                    error: &status];
        if ( result != nil )
            return ( result );
        if ( error != NULL )
            *error = [NSError errorWithCCCryptorStatus: status];    
        return ( nil );
    }
    

    在这里多说几句。其实这里AES128加密需要设计很多类型。这都是AES128的类型。其实就是代表他的偏移量。我们公司用的是偏移量为0。0x0000就好。

        kCCModeECB      = 1,
        kCCModeCBC      = 2,
        kCCModeCFB      = 3,
        kCCModeCTR      = 4,
        kCCModeOFB      = 7,
        kCCModeRC4      = 9,
        kCCModeCFB8     = 10,
    

    MD5 加密操作是不可逆的。只有加密。

    - (NSData *) MD5Sum
    {
        unsigned char hash[CC_MD5_DIGEST_LENGTH];
        (void) CC_MD5( [self bytes], (CC_LONG)[self length], hash );
        return ( [NSData dataWithBytes: hash length: CC_MD5_DIGEST_LENGTH] );
    }
    

    Salt 加盐操作。

    这个基本都是结合其他加密一起用。首先和云端沟通好一段盐, 用你的参数+盐 然后经过Base64或者AES 加密后 传给云端。云端解密后去掉盐。

    SHA256 其实也是另类的MD5 只不过参数不一样。同样是生成哈希值。

    + (NSData*)sha256HashFor:(NSData*)input{   
        unsigned char result[CC_SHA256_DIGEST_LENGTH];
        CC_SHA256(input.bytes, (CC_LONG)strlen(input.bytes), result);
       return [NSData dataWithBytes:result length:CC_SHA256_DIGEST_LENGTH];
    }
    

    !!下面重点来了。我们公司这个独特的加密机制。

    • CRC16
    • HKDF
    • ECDSA
    1.CRC16

    这个每个公司有不同的算法。
    看网上也有不同的处理办法。

    • 关键的参数有 0x1021
    uint16_t crc_16_CCITT_False(char * pucFrame,int offset ,short usLen)
    {
        int start = offset; //选择数据要计算CRC的起始位
        int end = offset + usLen; //选择数据要CRC计算的范围段
     
        unsigned short  crc = 0xffff; // initial value
        unsigned short  polynomial = 0x1021; // poly value
        for (int index = start; index < end; index++)
        {
            Byte b = pucFrame[index];
            for (int i = 0; i < 8; i++) {
                BOOL bit = ((b >> (7 - i) & 1) == 1);
                BOOL c15 = ((crc >> 15 & 1) == 1);
                crc <<= 1;
                if (c15 ^ bit)
                    crc ^= polynomial;
            }
        }
        crc &= 0xffff;
        return crc;
    }
    

    参考:https://blog.csdn.net/aming090/article/details/82878485

    2. HKDF

    gihub上有个大神的demo。可以直接用。
    HKDF https://github.com/signalapp/HKDFKit

    3. ECDSA 双曲线螺旋算法。

    这个加密可苦了我了。我们这边给的是安卓代码。让你看安卓去还原。
    首先设备端给的64的byte。叫raw。 谁知道raw 是什么东西。
    后来看了好多文章。解释可能是x,y.
    苹果这边ecc 生成 公钥私钥。打印公钥 log 能看见x,y
    但是打印出来 也没法key value 去获取。

    <SecKeyRef curve type: kSecECCurveSecp256r1, algorithm id: 3, key type: ECPublicKey, version: 4, block size: 256 bits, y: CF2311CE011C624741B67E3910412A18A48DB6AA0BB2D0E4D0EBC61C07D0A7D2, x: 979E2AB57FD9D29D2DEF531C34F3CE11A13DD0AFC2024AC6C2696D9E86D1BB16, addr: 0x153e143e0>
    

    然后去集成openssl 发现生成的pem publickkey 和privitekey 无法还原byte 和iOS原生的SeckeyRef

    openSSL https://stackoverflow.com/questions/15728636/how-to-pin-the-public-key-of-a-certificate-on-ios
    pem转化成SecKeyRefhttps://www.jianshu.com/p/783f2605f3e9

    安卓 iOS 客户端 rsa转化http://blog.sina.com.cn/s/blog_48d4cf2d0102vctu.html

    后来终于找到了一片解释的文章。

    Creating and Dismantling EC Key in SecKey Swift iOS

    他详细了解释了 Seckeyref raw data 三者的关系 以及转化。

    1.Creating and Dismantling EC Key in SecKey Swift iOS

      var xStr = /* ...... */ //Base64 Formatted data
      var yStr = /* ...... */
      var dStr = /* ...... */ //For Public key we won't be using d value
      //Padding required 
      xStr = xStr.replacingOccurrences(of: "-", with: "+").replacingOccurrences(of: "_", with: "/")
      if xStr.count % 4 == 2 {
       xStr.append("==")
      }
      if xStr.count % 4 == 3 {
       xStr.append("=")
      }
      let xBytes = Data(base64Encoded: xStr)
      /*Same with y and d*/
      let yBytes = Data(base64Encoded: yStr)
      let dBytes = Data(base64Encoded: dStr)
            
      //Now this bytes we have to append such that [0x04 , /* xBytes */, /* yBytes */, /* dBytes */]
      //Initial byte for uncompressed y as Key.
      let keyData = NSMutableData.init(bytes: [0x04], length: [0x04].count)
            keyData.append(xBytes)
            keyData.append(yBytes)
            keyData.append(dBytes)
            let attributes: [String: Any] = [
                kSecAttrKeyType as String: kSecAttrKeyTypeEC,
                kSecAttrKeyClass as String: kSecAttrKeyClassPrivate,
                kSecAttrKeySizeInBits as String: 256,
                kSecAttrIsPermanent as String: false
            ]
            var error: Unmanaged<CFError>?
            let keyReference = SecKeyCreateWithData(keyData as CFData, attributes as CFDictionary, &error) as! SecKey
    
    • for public key we wont be using d component else everything will be same.
    • 公钥这里不需要d 因为没有Z轴

    2.Getting x, y and d from SecKey EC Key

    var error: Unmanaged<CFError>?
    let keyData = SecKeyCopyExternalRepresentation(privateKey, &error)
    let data = keyData! as Data
    var privateKeyBytes = data.bytes
    privateKeyBytes.removeFirst()
    //For public key bytes will be divide into 2
    let pointSize = privateKeyBytes.count / 3
    let xBytes = privateKeyBytes[0..<pointSize]
    let yBytes = privateKeyBytes[pointSize..<pointSize*2]
    //dBytes wont be there in public key
    let dBytes = privateKeyBytes[pointSize*2..<pointSize*3]
    //this x, y and d bytes can be expressed in HexaDecimal format or base64 format
    

    3.x, y and d (JWK) to SecKey

    • 这里是我要的。
    dStr = dStr.replacingOccurrences(of: “-”, with: “+”).replacingOccurrences(of: “_”, with: “/”)
    if dStr.count % 4 == 2 {
        dStr.append(“==”)
    }
    if dStr.count % 4 == 3 {
        dStr.append(“=”)
    }
    xStr = xStr.replacingOccurrences(of: “-”, with: “+”).replacingOccurrences(of: “_”, with: “/”)
    if xStr.count % 4 == 2 {
        xStr.append(“==”)
    }
    if xStr.count % 4 == 3 {
        xStr.append(“=”)
    }
    yStr = yStr.replacingOccurrences(of: “-”, with: “+”).replacingOccurrences(of: “_”, with: “/”)
    if yStr.count % 4 == 2 {
        yStr.append(“==”)
    }
    if yStr.count % 4 == 3 {
        yStr.append(“=”)
    }
    let d : [UInt8] = (Data.init(base64Encoded: dStr)?.bytes)!
    let x : [UInt8] = (Data.init(base64Encoded: xStr)?.bytes)!
    let y : [UInt8] = (Data.init(base64Encoded: yStr)?.bytes)!
    let i : [UInt8] = [0x04]
    let privBytes = i + x + y + d
    let pubBytes = i + x + y
    let privateKey = SecKeyCreateWithData(Data.init(bytes: privBytes) as CFData, attributesECPri as CFDictionary, &error)
    //Optional<SecKeyRef> — some : <SecKeyRef curve type: kSecECCurveSecp256r1, algorithm id: 3, key type: ECPrivateKey, version: 4, block size: 256 bits, addr: 0x7f944bc1fc20>
    let publicKey = SecKeyCreateWithData(Data.init(bytes: pubBytes) as CFData, attributesECPub as CFDictionary, &error)
    //Optional<SecKeyRef> — some : <SecKeyRef curve type: kSecECCurveSecp256r1, algorithm id: 3, key type: ECPublicKey, version: 4, block size: 256 bits, y: 2E4D27C6DBA042BD31C5326049F24198A667213EBF61FA31918E9DD535D6BF7B, x: 405964ECD9FB3142E17FFC9A765300F50005761207275E27A98F554BB78E904B, addr: 0x7f944bc1dff0>
    

    4.SecKey to x, y and d

    let ixyd = SecKeyCopyExternalRepresentation(privateKey!, &error)
    //Optional<CFDataRef> — some : <04405964 ecd9fb31 42e17ffc 9a765300 f5000576 1207275e 27a98f55 4bb78e90 4b2e4d27 c6dba042 bd31c532 6049f241 98a66721 3ebf61fa 31918e9d d535d6bf 7b538932 67a86d63 d134001e 5690436f e6afb05f 04820ba5 8a219734 7c97b527 9a>
    let ixy = SecKeyCopyExternalRepresentation(publicKey!, &error)
    //Optional<CFDataRef> — some : <04405964 ecd9fb31 42e17ffc 9a765300 f5000576 1207275e 27a98f55 4bb78e90 4b2e4d27 c6dba042 bd31c532 6049f241 98a66721 3ebf61fa 31918e9d d535d6bf 7b>
    if publicKeySec == publicKey && privateKey == privateKeySec && error == nil {
        print(“the end”)
    }
    

    总结

    从这篇文章看来。对应64byte 的raw = x(32byte)+y(byte).
    而iOS端的 公钥 = 04 + raw
    私钥 = 04 + raw + z (32)byte

    附上测试的网站

    在线AES加密解密
    hex pem ask2码
    [Encryption / desrypton tool]https://8gwifi.org/bccrypt.jsp

    相关文章

      网友评论

          本文标题:iOS 大部分的加密与解密

          本文链接:https://www.haomeiwen.com/subject/hsphfltx.html