Regression:系统的输出是一个标量
Classification:在输出中多选一
- 线性
- 非线性:DeepLearning SVM decision-tree KNN...
Transfer Learning:训练过的系统可以分类大象、猴子。那么它对识别猫狗有什么帮助
Unsupervised Learning:Machine Drawing
Structured Learning:
Reinforcement Learning:从评价中去学习,没有数据去做supervised learning的时候做
Regression
天气预测,股价预测,自动驾驶等等
bias 偏差 模型对于数据的拟合度 欠拟合的模型 高偏差
variance 方差 对于数据改变的敏感性 过拟合的模型 高方差
![](https://img.haomeiwen.com/i11864412/7b69a537a55321c4.png)
AdaGrad自适应学习率的梯度下降
核心思想:每个参数第t次的学习率都会除以之前所有微分的均方根
Stochastic Gradient Descent 随机梯度下降
半监督学习
概念:部分数据没有label
自学习
训练的时候,先用有label的数据进行模型训练,然后将模型用于没有label的测试数据。然后将部分训练数据放回训练集重新训练模型(放回的规则自定义)
这种方法不适用于回归问题,原因是哪些放进训练集的数据对模型不会有任何影响。(是不是显而易见)
![](https://img.haomeiwen.com/i11864412/1992cef898ce70a2.png)
没有label的数据,用作熵正则项,对模型进行训练
![](https://img.haomeiwen.com/i11864412/08e2e244deb561bb.png)
Smoothness Assumption
![](https://img.haomeiwen.com/i11864412/35f1009cb0ae375f.png)
方法:cluster and then label (聚类)
对于图像,先用deep autoencoder抽取特征,再做聚类
![](https://img.haomeiwen.com/i11864412/0256453477f67997.png)
![](https://img.haomeiwen.com/i11864412/0578185b042cc873.png)
![](https://img.haomeiwen.com/i11864412/b1c865be98030fbc.png)
![](https://img.haomeiwen.com/i11864412/e542c265e7a7b999.png)
非监督学习
- 聚类、降维
- generation生成
PCA
![](https://img.haomeiwen.com/i11864412/77c34b201aac5034.png)
![](https://img.haomeiwen.com/i11864412/ed8533f6c13269f9.png)
![](https://img.haomeiwen.com/i11864412/4a293c01ce34be04.png)
PCA可以用奇异值分解SVD来求解
LLE
![](https://img.haomeiwen.com/i11864412/f2cfcfc78e552e83.png)
![](https://img.haomeiwen.com/i11864412/bc29ec69e3008a3e.png)
![](https://img.haomeiwen.com/i11864412/beaa316a4d86cef2.png)
上面这些算法的问题是没有定义如果xi,xj距离很远,zi,zj应该是什么关系
t-SNE
![](https://img.haomeiwen.com/i11864412/c39d16f9f9c4e4a0.png)
常用于高维数据在低维空间的可视化
AutoEncoder
降维
PCA的神经网络版本
![](https://img.haomeiwen.com/i11864412/291a3696f4f8944b.png)
![](https://img.haomeiwen.com/i11864412/b0135f5f75c71655.png)
![](https://img.haomeiwen.com/i11864412/578111cc686a0281.png)
![](https://img.haomeiwen.com/i11864412/237b6239853b80be.png)
![](https://img.haomeiwen.com/i11864412/d9cea5ee00b02a71.png)
图像生成
Pixel RNN
VAE
VAE可以控制输出,学习出来的code中,每一项都在图中都有实际意义,比如头发长度,眼睛大小等等。
![](https://img.haomeiwen.com/i11864412/4d7d72eac11df26b.png)
![](https://img.haomeiwen.com/i11864412/d320ceb20b0546e7.png)
VAE的局限:始终没有学着生成新的图片
GAN generative adversarial network
generator(decoder in VAE)
discriminator
调参很困难 没有明确的信号告诉你目前的generator是不是足够好
Transfer Learning
target data (与Task相关的数据)
source data (与Task没有直接关系的数据)
one shot learning (target data很少)
![](https://img.haomeiwen.com/i11864412/5d02792bd6d5f4a5.png)
fine tune
- fine tune的时候加regularization (比如新模型和旧模型差异的L2)
- fine tune 部分层 (语音辨识一般fine tune 前面几层,图像识别一般是fine tune后面几层)
Multitask Learning
![](https://img.haomeiwen.com/i11864412/77a460c58340cab2.png)
Domain-adversarial training (GAN的一种)
![](https://img.haomeiwen.com/i11864412/1584b52639a454ee.png)
![](https://img.haomeiwen.com/i11864412/31a848c2efab4d82.png)
![](https://img.haomeiwen.com/i11864412/26c872c857599f9e.png)
![](https://img.haomeiwen.com/i11864412/19ecd64b45c373d3.png)
![](https://img.haomeiwen.com/i11864412/5e7ad61d284842ae.png)
Zero shot learning
![](https://img.haomeiwen.com/i11864412/c6c33608255eae06.png)
![](https://img.haomeiwen.com/i11864412/a2e970f0036aa5ef.png)
![](https://img.haomeiwen.com/i11864412/e8133561c261ab00.png)
SVM
SVM=hinge loss + kernel method
![](https://img.haomeiwen.com/i11864412/15014cafba739bc5.png)
![](https://img.haomeiwen.com/i11864412/42af57e240111415.png)
Linear SVM
![](https://img.haomeiwen.com/i11864412/07ee78f548bfe66c.png)
![](https://img.haomeiwen.com/i11864412/863d15bd1b76a3eb.png)
![](https://img.haomeiwen.com/i11864412/59a71b85836a45b1.png)
![](https://img.haomeiwen.com/i11864412/281f2493548344e1.png)
![](https://img.haomeiwen.com/i11864412/571159fb7090ae39.png)
Regression:
SVR: 在某个距离范围内loss就是0
Structured Learning
例子:目标检测的bounding box
![](https://img.haomeiwen.com/i11864412/729cc7df41657d19.png)
![](https://img.haomeiwen.com/i11864412/0e51b308578a48eb.png)
RNN
![](https://img.haomeiwen.com/i11864412/f3e306e180128ecc.png)
![](https://img.haomeiwen.com/i11864412/21b0bbbd4fc808a2.png)
![](https://img.haomeiwen.com/i11864412/eb69f3bc2d658550.png)
![](https://img.haomeiwen.com/i11864412/bd82bf2cd1f9c840.png)
![](https://img.haomeiwen.com/i11864412/1e09f2fd499925ea.png)
Attention based model
![](https://img.haomeiwen.com/i11864412/57f904173f05e22e.png)
![](https://img.haomeiwen.com/i11864412/ab761af2ccfcaa06.png)
![](https://img.haomeiwen.com/i11864412/7de89792f0ce5064.png)
网友评论