题目描述:https://leetcode.cn/problems/find-if-path-exists-in-graph
题目描述:
有一个具有 n
个顶点的 双向 图,其中每个顶点标记从 0
到 n - 1
(包含 0
和 n - 1
)。图中的边用一个二维整数数组 edges
表示,其中 edges[i] = [ui, vi]
表示顶点 ui
和顶点 vi
之间的双向边。 每个顶点对由 最多一条 边连接,并且没有顶点存在与自身相连的边。
请你确定是否存在从顶点 source
开始,到顶点 destination
结束的 有效路径 。
给你数组 edges
和整数 n
、source
和 destination
,如果从 source
到 destination
存在 有效路径 ,则返回 true
,否则返回 false
。
示例 1:
输入:n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
输出:true
解释:存在由顶点 0 到顶点 2 的路径:
- 0 → 1 → 2
- 0 → 2
示例 2:
输入:n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
输出:false
解释:不存在由顶点 0 到顶点 5 的路径.
提示:
1 <= n <= 2 * 10^5
0 <= edges.length <= 2 * 10^5
edges[i].length == 2
0 <= ui, vi <= n - 1
ui != vi
0 <= source, destination <= n - 1
- 不存在重复边
- 不存在指向顶点自身的边
解法:并查集
使用并查集。
代码:
class Solution {
private int[] parent;
class UnionFind {
public UnionFind(int n) {
parent = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
public int find(int x) {
if (x != parent[x]) {
parent[x] = find(parent[x]);
}
return parent[x];
}
private void union(int x, int y) {
parent[find(x)] = parent[find(y)];
}
}
public boolean validPath(int n, int[][] edges, int source, int destination) {
UnionFind unionFind = new UnionFind(n);
for (int[] edge : edges) {
unionFind.union(edge[0], edge[1]);
}
return unionFind.find(source) == unionFind.find(destination);
}
}
网友评论