美文网首页
TensorFlow 调用预训练好的模型—— Python 实现

TensorFlow 调用预训练好的模型—— Python 实现

作者: seniusen | 来源:发表于2018-10-02 13:25 被阅读0次

    1. 准备预训练好的模型

    • TensorFlow 预训练好的模型被保存为以下四个文件
    模型文件
    • data 文件是训练好的参数值,meta 文件是定义的神经网络图,checkpoint 文件是所有模型的保存路径,如下所示,为简单起见只保留了一个模型。
    model_checkpoint_path: "/home/senius/python/c_python/test/model-40"
    all_model_checkpoint_paths: "/home/senius/python/c_python/test/model-40"
    

    2. 导入模型图、参数值和相关变量

    import tensorflow as tf
    import numpy as np
    
    sess = tf.Session()
    X = None # input
    yhat = None # output
    
    def load_model():
        """
            Loading the pre-trained model and parameters.
        """
        global X, yhat
        modelpath = r'/home/senius/python/c_python/test/'
        saver = tf.train.import_meta_graph(modelpath + 'model-40.meta')
        saver.restore(sess, tf.train.latest_checkpoint(modelpath))
        graph = tf.get_default_graph()
        X = graph.get_tensor_by_name("X:0")
        yhat = graph.get_tensor_by_name("tanh:0")
        print('Successfully load the pre-trained model!')
    
    
    • 通过 saver.restore 我们可以得到预训练的所有参数值,然后再通过 graph.get_tensor_by_name 得到模型的输入张量和我们想要的输出张量。

    3. 运行前向传播过程得到预测值

    def predict(txtdata):
        """
            Convert data to Numpy array which has a shape of (-1, 41, 41, 41 3).
            Test a single example.
            Arg:
                    txtdata: Array in C.
            Returns:
                Three coordinates of a face normal.
        """
        global X, yhat
    
        data = np.array(txtdata)
        data = data.reshape(-1, 41, 41, 41, 3)
        output = sess.run(yhat, feed_dict={X: data})  # (-1, 3)
        output = output.reshape(-1, 1)
        ret = output.tolist()
        return ret
    
    
    • 通过 feed_dict 喂入测试数据,然后 run 输出的张量我们就可以得到预测值。

    4. 测试

    load_model()
    testdata = np.fromfile('/home/senius/python/c_python/test/04t30t00.npy', dtype=np.float32)
    testdata = testdata.reshape(-1, 41, 41, 41, 3) # (150, 41, 41, 41, 3)
    testdata = testdata[0:2, ...] # the first two examples
    txtdata = testdata.tolist()
    output = predict(txtdata)
    print(output)
    #  [[-0.13345889747142792], [0.5858198404312134], [-0.7211828231811523], 
    # [-0.03778800368309021], [0.9978875517845154], [0.06522832065820694]]
    
    • 本例输入是一个三维网格模型处理后的 [41, 41, 41, 3] 的数据,输出一个表面法向量坐标 (x, y, z)。

    获取更多精彩,请关注「seniusen」!


    seniusen

    相关文章

      网友评论

          本文标题:TensorFlow 调用预训练好的模型—— Python 实现

          本文链接:https://www.haomeiwen.com/subject/hvzooftx.html