美文网首页
Pipeline Aggregations

Pipeline Aggregations

作者: ZplD | 来源:发表于2019-06-26 18:50 被阅读0次
  • Avg Bucket Aggregation
    作用:获取想要的两个字段的平均值
{
  "size": 0,
  "aggs": {
    "sales_per_month": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "month"
      },
      "aggs": {
        "sales": {
          "sum": {
            "field": "price"
          }
        }
      }
    },
    "avg_monthly_sales": {
      "avg_bucket": {
        "buckets_path": "sales_per_month>sales" 获取平均销售量
      }
    }
  }
}
#返回
{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               }
            }
         ]
      },
      "avg_monthly_sales": {
          "value": 328.33333333333333
      }
   }
}
  • Derivative Aggregation
    作用:计算每个间隔内的导数
{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "sales_deriv": {
                    "derivative": {
                        "buckets_path": "sales" 
                    }
                }
            }
        }
    }
}
#返回
{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               } 
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               },
               "sales_deriv": {
                  "value": -490.0 
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2, 
               "sales": {
                  "value": 375.0
               },
               "sales_deriv": {
                  "value": 315.0
               }
            }
         ]
      }
   }
}
  • Max Bucket Aggregation,Min Bucket Aggregation,Sun Bucket Aggregation
    作用:获取所有间隔内的最大值或最小值或总和
{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                }
            }
        },
        "max_monthly_sales": {
            "max_bucket": {
                "buckets_path": "sales_per_month>sales" 
            }
        }
    }
}
#返回
{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               }
            }
         ]
      },
      "max_monthly_sales": {
          "keys": ["2015/01/01 00:00:00"], 
          "value": 550.0
      }
   }
}
  • Moving Average Aggregation
    作用:移动平均聚合,比如我们给的数据是[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],会不断的计算出:
    (1 + 2 + 3 + 4 + 5) / 5 = 3
    (2 + 3 + 4 + 5 + 6) / 5 = 4
    (3 + 4 + 5 + 6 + 7) / 5 = 5
{ 
    “size”:0,
    “aggs”:{ 
        “my_date_histo”:{                
            “date_histogram”:{ 
                “field”:“date”,
                “calendar_interval”:“1M” 
            },
            “aggs”:{ 
                “the_sum”:{ 
                    “sum”:{“field”:“price”}
                },
                “the_movavg”:{ 
                    “moving_avg”:{“buckets_path”:“the_sum”}
                } 
            } 
        } 
    } 
}
#返回
{ 
   “take”:11,
   “timed_out”:false,
   “_ shards”:...,
   “hits”:...,
   “aggregations”:{ 
      “my_date_histo”:{ 
         “buckets”:[ 
             { 
                 “key_as_string”:“ 2015/01/01 00:00:00“,
                 ”key“:1420070400000,
                 ”doc_count“:3,
                 ”the_sum“:{ 
                    ”value“:550.0 
                 } 
             },
             { 
                 ”key_as_string“:”2015/02/01 00: 00:00“,
                 ”钥匙“:1422748800000, 
                 “doc_count”:2,
                 “the_sum”:{
                    “value”:60.0 
                 },
                 “the_movavg”:{ 
                    “value”:550.0 
                 } 
             },
             { 
                 “key_as_string”:“2015/03/01 00:00:00”,
                 “key”:1425168000000,
                 “doc_count”:2,
                 “the_sum”:{ 
                    “value”:375.0 
                 },
                 “the_movavg”:{ 
                    “value”:305。0 
                 } 
             } 
         ] 
      } 
   } 
}
  • Moving Function Aggregation
    作用:类似上面的移动平均聚合,但功能更多,使用函数,不断的移动去计算下个值

  • Cumulative Sum Aggregation
    作用:不断增加,比如数据是[1,2,3,4,5],那么获得的数据就会是:
    1
    1+2
    1+2+3
    等等

{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "cumulative_sales": {
                    "cumulative_sum": {
                        "buckets_path": "sales" 
                    }
                }
            }
        }
    }
}
#返回
{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               },
               "cumulative_sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               },
               "cumulative_sales": {
                  "value": 610.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               },
               "cumulative_sales": {
                  "value": 985.0
               }
            }
         ]
      }
   }
}
  • Bucket Sort Aggregation
    作用:根据指定的字段排序输出
{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               },
               "cumulative_sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               },
               "cumulative_sales": {
                  "value": 610.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               },
               "cumulative_sales": {
                  "value": 985.0
               }
            }
         ]
      }
   }
}{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "total_sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "sales_bucket_sort": {
                    "bucket_sort": {
                        "sort": [
                          {"total_sales": {"order": "desc"}}#根据每月的金额倒序输出
                        ],
                        "size": 3#只要前三个月的
                    }
                }
            }
        }
    }
}
#返回
{
   "took": 82,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "total_sales": {
                   "value": 550.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "total_sales": {
                   "value": 375.0
               },
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "total_sales": {
                   "value": 60.0
               },
            }
         ]
      }
   }
}
  • Matrix Stats
    作用:计算指定字段的数量,平均值,均匀分布,不对称分步等
{
    "aggs": {
        "statistics": {
            "matrix_stats": {
                "fields": ["poverty", "income"]
            }
        }
    }
}
#返回
{
    ...
    "aggregations": {
        "statistics": {
            "doc_count": 50,
            "fields": [{
                "name": "income",
                "count": 50,
                "mean": 51985.1,
                "variance": 7.383377037755103E7,
                "skewness": 0.5595114003506483,
                "kurtosis": 2.5692365287787124,
                "covariance": {
                    "income": 7.383377037755103E7,
                    "poverty": -21093.65836734694
                },
                "correlation": {
                    "income": 1.0,
                    "poverty": -0.8352655256272504
                }
            }, {
                "name": "poverty",
                "count": 50,
                "mean": 12.732000000000001,
                "variance": 8.637730612244896,
                "skewness": 0.4516049811903419,
                "kurtosis": 2.8615929677997767,
                "covariance": {
                    "income": -21093.65836734694,
                    "poverty": 8.637730612244896
                },
                "correlation": {
                    "income": -0.8352655256272504,
                    "poverty": 1.0
                }
            }]
        }
    }
}

相关文章

网友评论

      本文标题:Pipeline Aggregations

      本文链接:https://www.haomeiwen.com/subject/hydhcctx.html