首先是 RxJava 地址
接着我们仿照 拆 RxJava 我们来拆一下 Rx 2.0
我们同样使用这个例子
Observable.just("Hello world")
.map(String::length)
.subscribeOn(Schedulers.computation())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(len -> {
System.out.println("got " + len + " @ "
+ Thread.currentThread().getName());
});
just
@CheckReturnValue
@NonNull
@SchedulerSupport(SchedulerSupport.NONE)
public static <T> Observable<T> just(T item) {
ObjectHelper.requireNonNull(item, "item is null");
return RxJavaPlugins.onAssembly(new ObservableJust<T>(item));
}
public final class ObservableJust<T> extends Observable<T> implements ScalarCallable<T> {
@Override
protected void subscribeActual(Observer<? super T> observer) {
ScalarDisposable<T> sd = new ScalarDisposable<T>(observer, value);
observer.onSubscribe(sd);
sd.run();
}
}
subscribeOn
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.CUSTOM)
public final Observable<T> subscribeOn(Scheduler scheduler) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
return RxJavaPlugins.onAssembly(new ObservableSubscribeOn<T>(this, scheduler));
}
public final class ObservableSubscribeOn<T> extends AbstractObservableWithUpstream<T, T> {
final Scheduler scheduler;
@Override
public void subscribeActual(final Observer<? super T> observer) {
final SubscribeOnObserver<T> parent = new SubscribeOnObserver<T>(observer);
observer.onSubscribe(parent);
parent.setDisposable(scheduler.scheduleDirect(new SubscribeTask(parent)));
}
final class SubscribeTask implements Runnable {
private final SubscribeOnObserver<T> parent;
SubscribeTask(SubscribeOnObserver<T> parent) {
this.parent = parent;
}
@Override
public void run() {
source.subscribe(parent);
}
}
static final class SubscribeOnObserver<T>
extends AtomicReference<Disposable>
implements Observer<T>, Disposable {
@Override
public void onNext(T t) {
downstream.onNext(t);
}
}
}
map
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final <R> Observable<R> map(Function<? super T, ? extends R> mapper) {
ObjectHelper.requireNonNull(mapper, "mapper is null");
return RxJavaPlugins.onAssembly(new ObservableMap<T, R>(this, mapper));
}
public final class ObservableMap<T, U> extends AbstractObservableWithUpstream<T, U> {
@Override
public void subscribeActual(Observer<? super U> t) {
source.subscribe(new MapObserver<T, U>(t, function));
}
static final class MapObserver<T, U> extends BasicFuseableObserver<T, U> {
final Function<? super T, ? extends U> mapper;
@Override
public void onNext(T t) {
...
try {
v = ObjectHelper.requireNonNull(mapper.apply(t), "The mapper function returned a null value.");
} catch (Throwable ex) {
fail(ex);
return;
}
downstream.onNext(v);
}
}
}
observeOn
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.CUSTOM)
public final Observable<T> observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
ObjectHelper.verifyPositive(bufferSize, "bufferSize");
return RxJavaPlugins.onAssembly(new ObservableObserveOn<T>(this, scheduler, delayError, bufferSize));
}
public final class ObservableObserveOn<T> extends AbstractObservableWithUpstream<T, T> {
final Scheduler scheduler;
@Override
protected void subscribeActual(Observer<? super T> observer) {
if (scheduler instanceof TrampolineScheduler) {
source.subscribe(observer);
} else {
Scheduler.Worker w = scheduler.createWorker();
source.subscribe(new ObserveOnObserver<T>(observer, w, delayError, bufferSize));
}
}
static final class ObserveOnObserver<T> extends BasicIntQueueDisposable<T>
implements Observer<T>, Runnable {
@Override
public void onNext(T t) {
if (done) {
return;
}
if (sourceMode != QueueDisposable.ASYNC) {
queue.offer(t);
}
schedule();
}
void schedule() {
if (getAndIncrement() == 0) {
worker.schedule(this);
}
}
@Override
public void run() {
if (outputFused) {
drainFused();
} else {
drainNormal();
}
}
void drainNormal() {
for (;;) {
...
for (;;) {
...
try {
v = q.poll();
} catch (Throwable ex) {
Exceptions.throwIfFatal(ex);
disposed = true;
upstream.dispose();
q.clear();
a.onError(ex);
worker.dispose();
return;
}
...
a.onNext(v);
}
missed = addAndGet(-missed);
if (missed == 0) {
break;
}
}
}
}
}
我们从代码可以看到,subscribeOn是在 subscribeActual
执行,影响其上游
, observerOn只是在 subscribeActual
中创建了一个 worker 作为参数传递给了 Observer,真正调用是在 Observer 的 onNext
中,影响其下游
,更直观的我们可以看下图

我们看到,subscribeOn 会一直影响上游的
subscribeActual
和 onNext
,如果没有其他线程,会一直执行在当前 subscribeOn 线程中。至于map,会在相应的 Observer 的
onNext
中执行 mapper.apply(t)
。
Just 调用过程

Just-Map 调用过程

Just-Map-SubscribeOn调用过程

Backpressure
在 RxJava 1.x 中,数据都是从 observable push 到 subscriber 的,但要是 observable 发得太快,subscriber 处理不过来,该怎么办?一种办法是,把数据保存起来,但这显然可能导致内存耗尽;另一种办法是,多余的数据来了之后就丢掉,至于丢掉和保留的策略可以按需制定;还有一种办法就是让 subscriber 向 observable 主动请求数据,subscriber 不请求,observable 就不发出数据。它俩相互协调,避免出现过多的数据,而协调的桥梁,就是 producer。
网友评论