和 NumPy ndarray 一样,我们可以对 Pandas Series 执行元素级算术运算。
# We create a Pandas Series that stores a grocery list of just fruits
fruits= pd.Series(data = [10, 6, 3,], index = ['apples', 'oranges', 'bananas'])
# We display the fruits Pandas Series
fruits
apples 10
oranges 6
bananas 3
dtype: int64
我们现在可以通过执行基本的算术运算,修改 fruits 中的数据。我们来看一些示例:
# We print fruits for reference
print('Original grocery list of fruits:\n ', fruits)
# We perform basic element-wise operations using arithmetic symbols
print()
print('fruits + 2:\n', fruits + 2) # We add 2 to each item in fruits
print()
print('fruits - 2:\n', fruits - 2) # We subtract 2 to each item in fruits
print()
print('fruits * 2:\n', fruits * 2) # We multiply each item in fruits by 2
print()
print('fruits / 2:\n', fruits / 2) # We divide each item in fruits by 2
print()
Original grocery list of fruits:
apples 10
oranges 6
bananas 3
dtype: int64
fruits + 2:
apples 12
oranges 8
bananas 5
dtype: int64
fruits - 2:
apples 8
oranges 4
bananas 1
dtype: int64
fruits * 2:
apples 20
oranges 12
bananas 6
dtype: int64
fruits / 2:
apples 5.0
oranges 3.0
bananas 1.5
dtype: float64
我们还可以对 Pandas Series 中的所有元素应用 NumPy 中的数学函数,例如 sqrt(x)
。
# We import NumPy as np to be able to use the mathematical functions
import numpy as np
# We print fruits for reference
print('Original grocery list of fruits:\n', fruits)
# We apply different mathematical functions to all elements of fruits
print()
print('EXP(X) = \n', np.exp(fruits))
print()
print('SQRT(X) =\n', np.sqrt(fruits))
print()
print('POW(X,2) =\n',np.power(fruits,2)) # We raise all elements of fruits to the power of 2
Original grocery list of fruits:
apples 10
oranges 6
bananas 3
dtype: int64
EXP(X) =
apples 22026.465795
oranges 403.428793
bananas 20.085537
dtype: float64
SQRT(X) =
apples 3.162278
oranges 2.449490
bananas 1.732051
dtype: float64
POW(X,2) =
apples 100
oranges 36
bananas 9
dtype: int64
Pandas 还允许我们仅对 fruits 购物清单中的部分条目应用算术运算。我们来看一些示例:
# We print fruits for reference
print('Original grocery list of fruits:\n ', fruits)
print()
# We add 2 only to the bananas
print('Amount of bananas + 2 = ', fruits['bananas'] + 2)
print()
# We subtract 2 from apples
print('Amount of apples - 2 = ', fruits.iloc[0] - 2)
print()
# We multiply apples and oranges by 2
print('We double the amount of apples and oranges:\n', fruits[['apples', 'oranges']] * 2)
print()
# We divide apples and oranges by 2
print('We half the amount of apples and oranges:\n', fruits.loc[['apples', 'oranges']] / 2)
Original grocery list of fruits:
apples 10
oranges 6
bananas 3
dtype: int64
Amount of bananas + 2 = 5
Amount of apples - 2 = 8
We double the amount of apples and oranges:
apples 20
oranges 12
dtype: int64
We half the amount of apples and oranges:
apples 5.0
oranges 3.0
dtype: float64
你还可以对具有混合数据类型的 Pandas Series 应用算术运算,前提是该算术运算适合 Series 中的所有数据类型,否则会出错。我们来看看将购物清单乘以 2 会发生什么
# We multiply our grocery list by 2
groceries * 2
eggs 60
apples 12
milk YesYes
bread NoNo
dtype: object
可以看出,在上述示例中,我们乘以了 2,Pandas 使每个条目的数据翻倍,包括字符串。Pandas 能够这么操作是因为,乘法运算 *
对数字和字符串来说都可行。如果你要应用对数字有效但是对字符串无效的运算,例如 /
,则会出错。如果 Pandas Series 中有混合类型的数据,确保对于所有的元素数据类型,这些算术运算都有效。
网友评论