美文网首页图形显示
Android graphics(三) surfacefling

Android graphics(三) surfacefling

作者: Yink_Liu | 来源:发表于2022-07-07 08:03 被阅读0次

    一、前言

    本文主要内容
    1、surfaceflinger初始化流程;
    2、surfaceflinger消息机制;
    3、surfaceflinger绘制流程;
    4、VSync分发流程

    surfaceFlinger由init进程启动,独立进程运行,它接受来自多个来源的数据缓冲区,对它们进行合成,然后发送到显示设备。
    简述显示过程
    1>、一个页面,一般分为三个window,状态栏、app和导航栏,每个window看作要显示的一层,windowManager显示时,请求surfaceflinger为每个window创建衣蛾surface(layer)来绘制显示
    每一个显示layer层,我们看作一个bufferqueue缓存队列。surfaceflinger合成bufferqueue,合成后送到Hardware Composer显示。
    2>、显示按照一定刷新率更新画面,手机平板通常为60fps(16.6ms显示一次),一次刷新由vsync信号发起,surfaceflinger接收到信号后组织这一次刷新显示。
    3>、当 VSYNC 信号到达时,SurfaceFlinger 会遍历它的层列表,以寻找新的缓冲区。如果找到新的缓冲区,它会获取该缓冲区;
    否则,它会继续使用以前获取的缓冲区。SurfaceFlinger 必须始终显示内容,因此它会保留一个缓冲区。如果在某个层上没有提交缓冲区,则该层会被忽略。
    备注:本文只列出关键代码,关键流程。

    二、surfaceflinger启动流程

    2.1、main入口

    surfaceflinger.rc由init.rc启动,main_surfaceflinger.cpp main函数为启动入口   
    
    int main(int, char**) {
        startGraphicsAllocatorService();
        // instantiate surfaceflinger
        sp<SurfaceFlinger> flinger = surfaceflinger::createSurfaceFlinger();
        // initialize before clients can connect
        flinger->init();
    
    
        // publish surface flinger
        sp<IServiceManager> sm(defaultServiceManager());
        sm->addService(String16(SurfaceFlinger::getServiceName()), flinger, false,
                       IServiceManager::DUMP_FLAG_PRIORITY_CRITICAL | IServiceManager::DUMP_FLAG_PROTO);
    
    
        flinger->run();
    }
    

    提炼其中重要三件事情,主要还是一个surfaceFlinger的创建
    1、createSurfaceFlinger并init(伴随onFirstRef)
    2、addService到上层
    3、进入消息循环

    2.2、surfaceflinger构造

    class SurfaceFlinger : public BnSurfaceComposer,
                           public PriorityDumper,
                           private IBinder::DeathRecipient,
                           private HWC2::ComposerCallback,
                           private ISchedulerCallback {
    

    SurfaceComposer继承自BnSurfaceComposer,即为实现了ISurfaceComposer接口的Bn服务端;
    Dump信息PriorityDumper;
    死亡通知DeathRecipient,当Binder服务端程序挂掉后,可以通知给绑定的Binder客户端程序;
    实现了HWC2的ComposerCallback回调,监听Composer HAL的一些事件,比如Hotplug, Vsync ...

    2.3、消息队列SurfaceFlinger::onFirstRef

    这里引出surfaceflinger重点之一surfaceflinger的消息队列。后面单独讲
    SurfaceFlinger继承RefBase类,所以此处一旦new出对象赋给sp指针后,将立刻触发SurfaceFlinger类的onFirstRef方法的调用。

    void SurfaceFlinger::onFirstRef() {
        mEventQueue->init(this);
    }
    

    2.4、SurfaceFlinger::init

    // Do not call property_set on main thread which will be blocked by init
    // Use StartPropertySetThread instead.
    void SurfaceFlinger::init() {
        // Get a RenderEngine
        mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create(
                renderengine::RenderEngineCreationArgs::Builder()
                        .setPixelFormat(static_cast<int32_t>(defaultCompositionPixelFormat))
                        .setImageCacheSize(maxFrameBufferAcquiredBuffers)
                        .setUseColorManagerment(useColorManagement)
                        .setEnableProtectedContext(enable_protected_contents(false))
                        .setPrecacheToneMapperShaderOnly(false)
                        .setSupportsBackgroundBlur(mSupportsBlur)
                        .setContextPriority(
                                useContextPriority
                                        ? renderengine::RenderEngine::ContextPriority::REALTIME
                                        : renderengine::RenderEngine::ContextPriority::MEDIUM)
                        .build()));
    
    
        // 创建HWComposer,通过mCompositionEngine->setHwComposer设置对象属性,并注册回调
        mCompositionEngine->setTimeStats(mTimeStats);
        mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName));
        mCompositionEngine->getHwComposer().setCallback(this);
        ClientCache::getInstance().setRenderEngine(&getRenderEngine());
    
    
        // 任何初始热插拔和显示更改的结果
        processDisplayHotplugEventsLocked();
        const auto display = getDefaultDisplayDeviceLocked();
        LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");
        const auto displayId = display->getPhysicalId();
        LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(displayId),
                            "Internal display is disconnected.");
    
    
        // 初始化display
        initializeDisplays();
    
    
        // 开启一个设置属性的线程
        if (mStartPropertySetThread->Start() != NO_ERROR) {
            ALOGE("Run StartPropertySetThread failed!");
        }
    }
    

    init方法主要做了这么几件事情:
    1、创建一个RenderEngine
    2、创建HWComposer,通过mCompositionEngine->setHwComposer设置对象属性,并注册回调
    3、处理Display显示屏幕的热插拔
    4、初始化显示设备
    5、开启设置属性线程

    2.5、SurfaceFlinger::run

    main函数中最后一步,run开启无限循环等待消息

    void SurfaceFlinger::run() {
        while (true) {
            mEventQueue->waitMessage();
        }
    }
    

    2.5小结

    上面五个小点总结了surfaceflinger的初始化过程。整体来说初始化更多还是对象的创建,要更加深入的理解surfaceflinger,
    我们还应该剖析一些重要流程出来理解。这样才有助于理解surfaceflinger在绘制过程中如何承上启下

    三、Surfaceflinger消息队列

    在surafceflinger的构造函数中初始化

    SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
          : ...
            mEventQueue(mFactory.createMessageQueue()),
            
    //framework/native/services/surfaceflinger/SurfaceFlingerDefaultFactory.cpp
    /frameworks/native/services/surfaceflinger/Scheduler/MessageQueue.h     
    //frameworks/native/services/surfaceflinger/Scheduler/MessageQueue.cpp
    std::unique_ptr<MessageQueue> DefaultFactory::createMessageQueue() {
        return std::make_unique<android::impl::MessageQueue>();
    }
    
    
    //framework/native/services/surfaceflinger/Scheduler/MessageQueue.h
    class MessageQueue {
    public:
        enum {
            INVALIDATE = 0,
            REFRESH = 1,
        };
    
    
        virtual ~MessageQueue() = default;
    
    
        virtual void init(const sp<SurfaceFlinger>& flinger) = 0;
        virtual void initVsync(scheduler::VSyncDispatch&, frametimeline::TokenManager&,
                               std::chrono::nanoseconds workDuration) = 0;
        virtual void setDuration(std::chrono::nanoseconds workDuration) = 0;
        virtual void setInjector(sp<EventThreadConnection>) = 0;
        virtual void waitMessage() = 0;
        virtual void postMessage(sp<MessageHandler>&&) = 0;
        virtual void invalidate() = 0;
        virtual void refresh() = 0;
        virtual std::optional<std::chrono::steady_clock::time_point> nextExpectedInvalidate() = 0;
    };
    

    如上代码,surfaceflinger消息队列中,重要的两个事件,INVALIDATEREFRESH

    // framework/native/services/surfaceflinger/Scheduler/MessageQueue.cpp
    void MessageQueue::Handler::dispatchRefresh() {
        if ((mEventMask.fetch_or(eventMaskRefresh) & eventMaskRefresh) == 0) {
            mQueue.mLooper->sendMessage(this, Message(MessageQueue::REFRESH));
        }
    }
    
    
    void MessageQueue::Handler::dispatchInvalidate(int64_t vsyncId, nsecs_t expectedVSyncTimestamp) {
        if ((mEventMask.fetch_or(eventMaskInvalidate) & eventMaskInvalidate) == 0) {
            mVsyncId = vsyncId;
            mExpectedVSyncTime = expectedVSyncTimestamp;
            mQueue.mLooper->sendMessage(this, Message(MessageQueue::INVALIDATE));
        }
    }
    
    
    void MessageQueue::Handler::handleMessage(const Message& message) {
        switch (message.what) {
            case INVALIDATE:
                mEventMask.fetch_and(~eventMaskInvalidate);
                mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime);
                break;
            case REFRESH:
                mEventMask.fetch_and(~eventMaskRefresh);
                mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime);
                break;
        }
    }
    

    消息队列又处理回surfaceflinger中的onMessageReceived方法

    //SurfaceFlinger.cpp
    void SurfaceFlinger::onMessageReceived(int32_t what, nsecs_t expectedVSyncTime) {
        ATRACE_CALL();
        switch (what) {
            case MessageQueue::INVALIDATE: {
                onMessageInvalidate(expectedVSyncTime);
                break;
            }
            case MessageQueue::REFRESH: {
                onMessageRefresh();
                break;
            }
        }
    }
    

    这里摘录一个bufferqueue的acquireBuffer方法时的堆栈
    vsync刷新信号过来onMessageReceived收到消息后,bufferqueue开始处理图像队列

    04-19 19:33:38.926   666   666 E acquireBuffer: #00 pc 0004d34f  /system/lib/libgui.so (android::BufferQueueConsumer::acquireBuffer(android::BufferItem*, long long, unsigned long long)+74)
    04-19 19:33:38.926   666   666 E acquireBuffer: #01 pc 000645cf  /system/lib/libgui.so (android::ConsumerBase::acquireBufferLocked(android::BufferItem*, long long, unsigned long long)+62)
    04-19 19:33:38.926   666   666 E acquireBuffer: #02 pc 0007a7a1  /system/lib/libsurfaceflinger.so (android::FramebufferSurface::advanceFrame(bool)+112)
    04-19 19:33:38.926   666   666 E acquireBuffer: #03 pc 000edf1f  /system/lib/libsurfaceflinger.so (android::compositionengine::impl::RenderSurface::queueBuffer(android::base::unique_fd_impl<android::base::DefaultCloser>, bool)+358)
    04-19 19:33:38.926   666   666 E acquireBuffer: #04 pc 000e46e7  /system/lib/libsurfaceflinger.so (android::compositionengine::impl::Output::finishFrame(android::compositionengine::CompositionRefreshArgs const&)+454)
    04-19 19:33:38.926   666   666 E acquireBuffer: #05 pc 000de3e5  /system/lib/libsurfaceflinger.so (android::compositionengine::impl::Display::finishFrame(android::compositionengine::CompositionRefreshArgs const&)+72)
    04-19 19:33:38.926   666   666 E acquireBuffer: #06 pc 000e3011  /system/lib/libsurfaceflinger.so (android::compositionengine::impl::Output::present(android::compositionengine::CompositionRefreshArgs const&)+92)
    04-19 19:33:38.926   666   666 E acquireBuffer: #07 pc 000dcfa1  /system/lib/libsurfaceflinger.so (android::compositionengine::impl::CompositionEngine::present(android::compositionengine::CompositionRefreshArgs&)+144)
    04-19 19:33:38.926   666   666 E acquireBuffer: #08 pc 000baf81  /system/lib/libsurfaceflinger.so (android::SurfaceFlinger::onMessageRefresh()+1280)
    04-19 19:33:38.926   666   666 E acquireBuffer: #09 pc 000b8b1d  /system/lib/libsurfaceflinger.so (android::SurfaceFlinger::onMessageReceived(int, long long)+52)
    

    四、surfaceflinger绘制流程

    4.1、wms和surfaceflinger创建surface流程

    4.1.1、wms和surfaceflinger建立连接

    要显示的页面通过window告诉surfaceflinger创建surface来绘图,这个surface就是一个layer(layer的核心就是buffer queue);
    surfaceflinger创建的bufferqueue不会传递到app,而是通过内存共享直接供app绘制。bufferqueue都不会传递;
    那么这一节内容我们来讲讲这个流程

    //WMS
    public int addWindow(Session session, IWindow client, int seq, WindowManager.LayoutParams attrs, int viewVisibility, int displayId, Rect outContentInsets, Rect outStableInsets, Rect outOutsets, InputChannel outInputChannel) {
        win.attach(); // WindowState
    }
    
    
    // WindowState.attch
    void attach() {
        mSession.windowAddedLocked();
    }
    
    
    void windowAddedLocked(String packageName) {
        if (mSurfaceSession == null) {
            mSurfaceSession = new SurfaceSession();
        }
    }
    
    
    // SurfaceSession.java
    private long mNativeClient; // SurfaceComposerClient*
    
    
    /** Create a new connection with the surface flinger. */
    public SurfaceSession() {
        mNativeClient = nativeCreate();
    }
    
    
    // frameworks/base/core/jni/android_view_SurfaceSession.cpp
    static jlong nativeCreate(JNIEnv* env, jclass clazz) {
        SurfaceComposerClient* client = new SurfaceComposerClient();
        client->incStrong((void*)nativeCreate);
        return reinterpret_cast<jlong>(client);
    }
    
    
    void SurfaceComposerClient::onFirstRef() {
        sp<ISurfaceComposerClient> conn = (rootProducer != nullptr) ? sf->createScopedConnection(rootProducer) : sf->createConnection();
        if (conn != 0) {
            mClient = conn;
        }
        // ...
    }
    
    
    sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
        return initClient(new Client(this)); // initClient方法只是调用initCheck检查了一下
    }
    

    上面截取了一段流程代码:
    1>、从我们熟知的addwindow开始,WindowSate表示一个window;
    2>、mSurfaceSession表示一个跟surfaceflinger的连接,其中SurfaceComposerClient就是表示连接的指针;
    3>、最后创建的Client实现ISurfaceComposerClient的aidl,它可以创建Surface,并且维护一个应用程序的所有Layer;

    4.1.2、Surface创建对应Layer

    // ViewRootImpl.java
    public final Surface mSurface = new Surface();
    一个ViewRootImpl对应一个Surface(上层surface),而Surface 在 SurfaceFlinger 中对应的实体是 Layer 对象。  
    1>、一个Vsync信号(vysnc发起页面刷新流程)执行ViewRootImpl.performTraversals    
    
    private void performTraversals() {
        relayoutWindow(params, viewVisibility, insetsPending)
        // measure, layout, draw
    }
    
    
    private int relayoutWindow(...) throws RemoteException {
        // 最后一个参数 mSurface 就是之前创建的 Surface 对象
        mWindowSession.relayout(mWindow, ..., mSurface);
    }
    
    
    // WMS
    public int relayoutWindow(Session session, ..., Surface outSurface) {
        result = createSurfaceControl(outSurface, result, win, winAnimator);
    }
    
    
    private int createSurfaceControl(Surface outSurface, int result, WindowState win, WindowStateAnimator winAnimator) {
        WindowSurfaceController surfaceController = winAnimator.createSurfaceLocked(win.mAttrs.type, win.mOwnerUid);
        if (surfaceController != null) {
            surfaceController.getSurface(outSurface);
        } else {
            outSurface.release();
        }
        return result;
    }
    

    上面这一段主要是为了说明relayoutWindow会createSurfaceControl
    2>、surface的layer创建由SurfaceControl来进行

    private SurfaceControl(...) {
        // 返回 native SurfaceControl 指针
        mNativeObject = nativeCreate(session, name, w, h, format, flags, parent != null ? parent.mNativeObject : 0, windowType, ownerUid);
    }
    
    
    // frameworks/base/core/jni/android_view_SurfaceControl.cpp
    static jlong nativeCreate(...) {
        // client 即wms和surfaceflinger建立连接时的SurfaceComposerClient指针  
        sp<SurfaceComposerClient> client(android_view_SurfaceSession_getClient(env, sessionObj));
        client->createSurfaceChecked(String8(name.c_str()), w, h, format, &surface, flags, parent, windowType, ownerUid);
    }
    
    
    // framework/native/libs/gui/SurfaceComposerClient.cpp
    status_t SurfaceComposerClient::createSurfaceChecked(..., sp<SurfaceControl>* outSurface, ...) {
        err = mClient->createSurface(name, w, h, format, flags, parentHandle, std::move(metadata),
                                         &handle, &gbp, &id, &transformHint);
    }
    
    
    //framework/native/services/surfaceflinger/Client.cpp
    status_t Client::createSurface(...) {
        return mFlinger->createLayer(name, this, w, h, format, flags, std::move(metadata), handle, gbp,
                                     parentHandle, outLayerId, nullptr, outTransformHint);
    }
    

    这里来来回回最后还是SurfaceComposerClient指针组织了createSurface,即创建了surface对应的layer

    4.1.3、上层surface和Layer对应起来

    createSurfaceControl创建了layer,接着立马getSurface创建对应关系
    因为上层创建的surface还是一个空的对象,copyFrom等于就是填充了surface的内容
    接上面4.1.2中createSurfaceControl方法中的surfaceController.getSurface(outSurface)

    // outSurface是上层ViewRootImpl创建的surface
    void getSurface(Surface outSurface) {
        outSurface.copyFrom(mSurfaceControl);
    }
    
    
    // Surface.java
    public void copyFrom(SurfaceControl other) {
        long surfaceControlPtr = other.mNativeObject;
        // mNativeObject是4.2.2 小结 SurfaceControl创建时返回的指针
        long newNativeObject = nativeGetFromSurfaceControl(surfaceControlPtr);
    
    
        synchronized (mLock) {
            if (mNativeObject != 0) {
                nativeRelease(mNativeObject);
            }
            // 把指针赋值给mNativeObject
            setNativeObjectLocked(newNativeObject);
        }
    }
    
    
    private void setNativeObjectLocked(long ptr) {
        if (mNativeObject != ptr) {
            mNativeObject = ptr;
            if (mHwuiContext != null) {
                mHwuiContext.updateSurface();
            }
        }
    }
    
    
    // frameworks/base/core/jni/android_view_Surface.cpp
    static jlong nativeGetFromSurfaceControl(JNIEnv* env, jclass clazz, jlong surfaceControlNativeObj) {
        // java指针和底层指针的转换
        sp<SurfaceControl> ctrl(reinterpret_cast<SurfaceControl *>(surfaceControlNativeObj));
        sp<Surface> surface(ctrl->getSurface());
        if (surface != NULL) {
            surface->incStrong(&sRefBaseOwner);
        }
        return reinterpret_cast<jlong>(surface.get());
    }
    
    
    sp<Surface> SurfaceControl::getSurface() const
    {
        Mutex::Autolock _l(mLock);
        if (mSurfaceData == 0) {
            return generateSurfaceLocked();
        }
        return mSurfaceData;
    }
    
    
    sp<Surface> SurfaceControl::generateSurfaceLocked() const
    {
        // mGraphicBufferProducer 是上面创建的 gbp 对象
        // 这里new surface实际是底层的surface
        mSurfaceData = new Surface(mGraphicBufferProducer, false);
        return mSurfaceData;
    }
    

    1、nativeGetFromSurfaceControl 返回native Suface的指针,指针的值赋给SurfaceControl.mNativeObject
    2、上层surface调用copyFrom填充内容时,实际就是拿到了SurfaceControl了,也拥有了底层的surface指针,子集关系。

    4.2、Vysnc流程

    4.2.1 几点概念

    1、VSYNC 信号可同步显示流水线。显示流水线由应用渲染、SurfaceFlinger 合成以及用于在屏幕上显示图像的硬件混合渲染器 (HWC) 组成。
    2、VSYNC 可同步应用唤醒以开始渲染的时间、SurfaceFlinger 唤醒以合成屏幕的时间以及屏幕刷新周期。这种同步可以消除卡顿,并提升图形的视觉表现。
    3、vysnc的引入,可以及时的告知cpu/gpu暂停别的事情,及时处理显示的这一帧。从而减少卡顿发生。
    4、三级缓存:vsync+三级缓存,当第n+1处理不过来的时候,由于有三次缓存数据,即使n+1卡顿,或者n+1和n+2卡顿,只要没有连着卡三次,都有缓存可以拿,UI上就不会造成卡顿。

    4.2.2 DispSync

    DispSync 维护屏幕基于硬件的周期性 VSYNC 事件的模型


    image.png

    我们一共有三个信号,HW_VYNC_0 是硬件产生的同步信号
    DispSync则负责产生由Choreographer 和 SurfaceFlinger 使用的 VSYNC 和 SF_VSYNC 信号,不管是否接收到HW_VYSNC_0都会产生,HW_VYSNC_0只是起到参考作用

    4.2.3 Vync的偏移

    image.png

    HW_VSYNC_0 - 屏幕开始显示下一帧。
    VSYNC - 应用读取输入内容并生成下一帧。
    SF_VSYNC - SurfaceFlinger 开始为下一帧进行合成
    VSYNC_EVENT_PHASE_OFFSET_NS 和 SF_VSYNC_EVENT_PHASE_OFFSET_NS 对应phase-app和phase-sf,默认都为0

    偏移量的加入是为了减少延迟,我们以正常情况来讲,一帧16.6ms就能渲染完成。App可以在phase-sf - phase-app时间内完成绘制,SurfaceFlinger可以在VSync周期 - phase-sf时间内完成合成,那么在下一个VSync信号时就可以上屏,即帧延迟为16ms。这样理想情况下,延迟就被控制成了一帧。
    如果app绘制超时,sf就会在下一帧绘制,增加了一帧的周期。所以一般情况下,系统都会将phase-sf - phase-app设置为VSync周期。这样不管出现怎样的延迟现象,sf的延迟周期都是控制为一帧一帧的增加。

    4.2.4 Vync代码流程

    简述整个过程:
    1、整个Vsync流程是从HWC监听硬件产生的Vsync开始,由DispSync维护VSYNC模型,Vsync信号是一直存在的。
    2、app请求vsync
    一个页面并不是无时无刻都在刷新,当触摸view发生变化,请求焦点,开始动画或者startActivity等等时,ViewRootImpl会调用scheduleTraversals流程,这个流程会让app接收下一个Vsync信号。
    就是不管哪个方式刷新view都是scheduleTraversals来触发

       scheduleTraversals -> mChoreographer.postCallback() -> doScheduleVsync -> scheduleVsyncLocked -> nativeScheduleVsync -> requestNextVsync()
    

    3、app接收vsync
    收到信号后会控制view通过performTraversals方法绘制三大流程

       onVsync -> doFrame -> TraversalRunnable -> doTraversal() -> performTraversals()
    

    4.2.4.1 Vsync初始化

    分几个部分:
    1、initScheduler 初始化vysnc机制
    2、createVsyncSchedule:VSyncTracker、VSyncDispatch、VsyncController

    initScheduler部分

    //frameworks/native/services/surfaceflinger/DisplayHardware/HWC2.h
    struct ComposerCallback {
        // 热插拔事件
        virtual void onComposerHalHotplug(hal::HWDisplayId, hal::Connection) = 0; 
        // refresh 刷新事件
        virtual void onComposerHalRefresh(hal::HWDisplayId) = 0; 
        // VSYNC信号事件
        virtual void onComposerHalVsync(hal::HWDisplayId, int64_t timestamp, 
                                        std::optional<hal::VsyncPeriodNanos>) = 0;
    };
    
    //frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
    void SurfaceFlinger::init() {
        mCompositionEngine->setTimeStats(mTimeStats);
        mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName));
        // init方法注册回调开始,注册回调会立马触发onComposerHalHotplug方法
        mCompositionEngine->getHwComposer().setCallback(this); 
    }
    
    //frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
    void SurfaceFlinger::onComposerHalHotplug(hal::HWDisplayId hwcDisplayId,
                                              hal::Connection connection) {
        if (std::this_thread::get_id() == mMainThreadId) {
            // Process all pending hot plug events immediately if we are on the main thread.
            processDisplayHotplugEventsLocked(); // 主线程中去处理 hot plug evnets
        }
    }
    
    //frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
    void SurfaceFlinger::processDisplayHotplugEventsLocked() {
            if (event.connection == hal::Connection::CONNECTED) {
                    if (event.hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) {
                        initScheduler(state); // 初始化Scheduler
                    }
    }
    

    上面这部分代码initScheduler流程,是Vsync初始开始的地方,代码是从surfaceflinger::init开始,给HWC setCallback,直接回调hotplag热插拔,开始Scheduler的初始化
    接下来就是initScheduler具体内容:

    void SurfaceFlinger::initScheduler(const DisplayDeviceState& displayState) {
        if (mScheduler) {
            // In practice it's not allowed to hotplug in/out the primary display once it's been
            // connected during startup, but some tests do it, so just warn and return.
            ALOGW("Can't re-init scheduler");
            return;
        }
        const auto displayId = displayState.physical->id;
        scheduler::RefreshRateConfigs::Config config =
                {.enableFrameRateOverride = android::sysprop::enable_frame_rate_override(false),
                 .frameRateMultipleThreshold =
                         base::GetIntProperty("debug.sf.frame_rate_multiple_threshold", 0)};
        // 配置信息,刷新率刷新周期Period
        mRefreshRateConfigs =
                std::make_unique<scheduler::RefreshRateConfigs>(displayState.physical->supportedModes,
                                                                displayState.physical->activeMode
                                                                        ->getId(),
                                                                config);
        const auto currRefreshRate = displayState.physical->activeMode->getFps();
        // fps信息
        mRefreshRateStats = std::make_unique<scheduler::RefreshRateStats>(*mTimeStats, currRefreshRate,
                                                                          hal::PowerMode::OFF);
        // 不同分辨率下的VSYNC配置信息
        mVsyncConfiguration = getFactory().createVsyncConfiguration(currRefreshRate);
        mVsyncModulator = sp<VsyncModulator>::make(mVsyncConfiguration->getCurrentConfigs());
    
        // 创建Scheduler对象
        mScheduler = getFactory().createScheduler(*mRefreshRateConfigs, *this);
        const auto configs = mVsyncConfiguration->getCurrentConfigs();
        const nsecs_t vsyncPeriod = currRefreshRate.getPeriodNsecs();
        //创建一个名字为app的connection
         mAppConnectionHandle =
                mScheduler->createConnection("app", mFrameTimeline->getTokenManager(),
                                             /*workDuration=*/configs.late.appWorkDuration,
                                             /*readyDuration=*/configs.late.sfWorkDuration,
                                             impl::EventThread::InterceptVSyncsCallback());
        //创建一个名字为appsf的connection                                    
        mSfConnectionHandle =
                mScheduler->createConnection("appSf", mFrameTimeline->getTokenManager(),
                                             /*workDuration=*/std::chrono::nanoseconds(vsyncPeriod),
                                             /*readyDuration=*/configs.late.sfWorkDuration,
                                             [this](nsecs_t timestamp) {
                                                 mInterceptor->saveVSyncEvent(timestamp);
                                             });
        //initVsync主要作用是绑定一个回调函数 MessageQueue::vsyncCallback 到VSyncDispatch上,回调名字"sf"
        mEventQueue->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(),
                               configs.late.sfWorkDuration);
    
        mRegionSamplingThread =
                new RegionSamplingThread(*this, RegionSamplingThread::EnvironmentTimingTunables());
        mFpsReporter = new FpsReporter(*mFrameTimeline, *this);
        mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, displayId,
                                                displayState.physical->activeMode->getId(),
                                                vsyncPeriod);
        static auto ignorePresentFences =
                base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false);
        mScheduler->setIgnorePresentFences(
                ignorePresentFences ||
                getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE));
    }
    

    简述流程:
    1、HwComposer注册回调会立马触发onComposerHalHotplug方法,热插拔立马initScheduler
    2、配置fps、刷新周期、Vsync信息、app/sf偏移量、创建Scheduler、sf/appSf/app 三个callback

    createVsyncSchedule

    struct VsyncSchedule {
            std::unique_ptr<scheduler::VsyncController> controller;
            std::unique_ptr<scheduler::VSyncTracker> tracker;
            std::unique_ptr<scheduler::VSyncDispatch> dispatch;
        };
    
    Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) {
        auto clock = std::make_unique<scheduler::SystemClock>();
        auto tracker = createVSyncTracker();
        auto dispatch = createVSyncDispatch(*tracker);
    
        // TODO(b/144707443): Tune constants.
        constexpr size_t pendingFenceLimit = 20;
        auto controller =
                std::make_unique<scheduler::VSyncReactor>(std::move(clock), *tracker, pendingFenceLimit,
                                                          supportKernelTimer);
        return {std::move(controller), std::move(tracker), std::move(dispatch)};
    }
    

    创建VSyncTracker、VSyncDispatch、VsyncController封装到VsyncSchedule并返回

    名称 作用
    VSyncTracker 根据硬件的Vysnc、历史数据建立一个Vsync模型,预测Vsync信号
    VSyncDispatch 分发Vsync回调
    VsyncController 配合tracker采样
    Connection app,appSf,sf三个监听vysnc

    初始化部分主要介绍创建了哪些东西,vysnc运行机制的相关主角基本都列出来了。接下来我们先讲App请求Vsync和app接收Vsync。然后讲解Vsync的运作。

    4.2.4.2、App请求Vsync

    前面有简单提到app怎么开始请求vsync:

       scheduleTraversals -> mChoreographer.postCallback() -> doScheduleVsync -> scheduleVsyncLocked -> nativeScheduleVsync -> requestNextVsync()
    

    本文介绍的重点是surfaceflinger,所以我们来详细看下请求这个过程,surfaceflinger做了什么,java层也比较简单,跟着上面的流程去追一下就好。

    DisplayEventReceiver.java
    public void scheduleVsync() {
            ...
            nativeScheduleVsync(mReceiverPtr);
        }
    
    ///android_view_DisplayEventReceiver.cpp
    static void nativeScheduleVsync(JNIEnv* env, jclass clazz, jlong receiverPtr) {
        sp<NativeDisplayEventReceiver> receiver =
                reinterpret_cast<NativeDisplayEventReceiver*>(receiverPtr);
        status_t status = receiver->scheduleVsync();
        ...
    }
    
    //DisplayEventDispatcher.cpp
    status_t DisplayEventDispatcher::scheduleVsync() {
        ...
        status_t status = mReceiver.requestNextVsync();
        ...  
        return OK;
    }
    
    //DisplayEventReceiver.cpp
    status_t DisplayEventReceiver::requestNextVsync() {
        if (mEventConnection != nullptr) {
            mEventConnection->requestNextVsync();
            return NO_ERROR;
        }
        return NO_INIT;
    }
    
    ///EventThread.cpp 
    void EventThread::requestNextVsync(const sp<EventThreadConnection>& connection) {
        if (connection->resyncCallback) {
            connection->resyncCallback();
        }
    
        std::lock_guard<std::mutex> lock(mMutex);
    
        if (connection->vsyncRequest == VSyncRequest::None) {
            connection->vsyncRequest = VSyncRequest::Single;
            mCondition.notify_all();
        } else if (connection->vsyncRequest == VSyncRequest::SingleSuppressCallback) {
            connection->vsyncRequest = VSyncRequest::Single;
        }
    }
    

    App请求sync的流程,主要还是一个间接调用。在mCondition.notify_all唤醒锁后,继续后边的流程

    4.2.4.3、App接收Vsync

    //EventThread.cpp 
    void EventThread::threadMain(std::unique_lock<std::mutex>& lock) {
        DisplayEventConsumers consumers;
        //1、如果队列不为空取一次vsync的event事件出来
        if (!mPendingEvents.empty()) {
                event = mPendingEvents.front();
                mPendingEvents.pop_front();
        ...
        //2、先取出一个connection ,然后用shouldConsumeEvent判断是否发送到connection
        //这里无限循环,会取出所有需要分发消息的connection
        auto it = mDisplayEventConnections.begin();
        while (it != mDisplayEventConnections.end()) {
            if (const auto connection = it->promote()) {
                vsyncRequested |= connection->vsyncRequest != VSyncRequest::None;
                if (event && shouldConsumeEvent(*event, connection)) {
                    consumers.push_back(connection);
                }
            } else {
                it = mDisplayEventConnections.erase(it);
            }
        }
        ...
        //3、前面两个都满足了consumers就不为空,就开始分发
        if (!consumers.empty()) {
            dispatchEvent(*event, consumers);
            consumers.clear();
        }
        ...
        //4、上述两个条件没有满足,会走到这里wait,直到有请求来notify唤醒,也就是上面的notify_all
        if (mState == State::Idle) {
            mCondition.wait(lock);
        }
    

    1、这样EventThread就起到了一个有请求才会vsync的监测作用。
    2、注意consumers是所有需要分发dispatchEvent的connection合集
    3、继续dispatchEvent流程

    //EventThread.cpp
    void EventThread::dispatchEvent(const DisplayEventReceiver::Event& event,
                                    const DisplayEventConsumers& consumers) {
        for (const auto& consumer : consumers) {
            switch (consumer->postEvent(copy)) {
    
    status_t EventThreadConnection::postEvent(const DisplayEventReceiver::Event& event) {
        constexpr auto toStatus = [](ssize_t size) {
            ...
            auto size = DisplayEventReceiver::sendEvents(&mChannel, mPendingEvents.data(),
                                                         mPendingEvents.size());
                                                         
    //DisplayEventReceiver.cpp 
    ssize_t DisplayEventReceiver::sendEvents(gui::BitTube* dataChannel,
            Event const* events, size_t count)
    {
        return gui::BitTube::sendObjects(dataChannel, events, count);
    }
    
    //BitTube.cpp 
    ssize_t BitTube::sendObjects(BitTube* tube, void const* events, size_t count, size_t objSize) {
        const char* vaddr = reinterpret_cast<const char*>(events);
        ssize_t size = tube->write(vaddr, count * objSize);
    }
    
    ssize_t BitTube::write(void const* vaddr, size_t size) {
        ssize_t err, len;
        do {
            len = ::send(mSendFd, vaddr, size, MSG_DONTWAIT | MSG_NOSIGNAL);
            // cannot return less than size, since we're using SOCK_SEQPACKET
            err = len < 0 ? errno : 0;
        } while (err == EINTR);
        return err == 0 ? len : -err;
    }
    
    int BitTube::getFd() const {
        return mReceiveFd;
    }
    

    这里稍作解释:
    1、dispatchEvent流程一层一层调用会通过BitTube来传递信息
    2、BitTube用Linux/Unix中的socketpair进行跨进程数据传递,
    3、成员变量mReceiveFd,看起来是一个接收端,实际上这个fd也可以用来发送,同样mSendFd也可以用来接收,只是BitTube是按照单向方式使用它的:一端写入数据,另一端读出数据
    4、这里我们可以简单理解为mSendFd用来发送,mReceiveFd对端用来接收。

    //DisplayEventDispatcher.cpp
    status_t DisplayEventDispatcher::initialize() {
        ...
        int rc = mLooper->addFd(mReceiver.getFd(), 0, Looper::EVENT_INPUT, this, NULL);
    }
    
    int DisplayEventDispatcher::handleEvent(int, int events, void*) {
        ...
        // Drain all pending events, keep the last vsync.
        nsecs_t vsyncTimestamp;
        PhysicalDisplayId vsyncDisplayId;
        uint32_t vsyncCount;
        VsyncEventData vsyncEventData;
        //processPendingEvents取出一个有效的sync event
        if (processPendingEvents(&vsyncTimestamp, &vsyncDisplayId, &vsyncCount, &vsyncEventData)) {
            mWaitingForVsync = false;
            //分发
            dispatchVsync(vsyncTimestamp, vsyncDisplayId, vsyncCount, vsyncEventData);
    }
            
    void NativeDisplayEventReceiver::dispatchVsync(nsecs_t timestamp, PhysicalDisplayId displayId,
                                                   uint32_t count, VsyncEventData vsyncEventData) {
        JNIEnv* env = AndroidRuntime::getJNIEnv();
    
        ScopedLocalRef<jobject> receiverObj(env, jniGetReferent(env, mReceiverWeakGlobal));
        if (receiverObj.get()) {
            ALOGV("receiver %p ~ Invoking vsync handler.", this);
            // 调用到java层dispatchVsync方法
            env->CallVoidMethod(receiverObj.get(), gDisplayEventReceiverClassInfo.dispatchVsync,
                                timestamp, displayId.value, count, vsyncEventData.id,
                                vsyncEventData.deadlineTimestamp, vsyncEventData.frameInterval);
            ALOGV("receiver %p ~ Returned from vsync handler.", this);
        }
    
        mMessageQueue->raiseAndClearException(env, "dispatchVsync");
    }
    
    //DisplayEventReceiver.java
    @SuppressWarnings("unused")
    private void dispatchVsync(long timestampNanos, long physicalDisplayId, int frame,
            long frameTimelineVsyncId, long frameDeadline, long frameInterval) {
        onVsync(timestampNanos, physicalDisplayId, frame,
                new VsyncEventData(frameTimelineVsyncId, frameDeadline, frameInterval));
    }
    
    public void onVsync(long timestampNanos, long physicalDisplayId, int frame,
                    VsyncEventData vsyncEventData) {
        ...
        mTimestampNanos = timestampNanos;
        mFrame = frame;
        mLastVsyncEventData = vsyncEventData;
        Message msg = Message.obtain(mHandler, this);
        msg.setAsynchronous(true);
        mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
        
     private final class FrameHandler extends Handler {
        public FrameHandler(Looper looper) {
            super(looper);
        }
    
        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case MSG_DO_FRAME:
                    doFrame(System.nanoTime(), 0, new DisplayEventReceiver.VsyncEventData());
                    break;
                case MSG_DO_SCHEDULE_VSYNC:
                    doScheduleVsync();
                    break;
                case MSG_DO_SCHEDULE_CALLBACK:
                    doScheduleCallback(msg.arg1);
                    break;
            }
        }
    }
    

    接收流程
    1、有vysnc请求,有需要发送的connection,下一次vysnc event开始dispatchevent
    2、dispatchevent间接由DisplayEventDispatcher来负责分发
    3、分发时,间接调用java层dispatchVsync,由上层控制绘制view

    4.2.4.4、surfaceflinger接收Vsync

    1、有了上面app收发,基本就理解vsync是怎么被分发出去了。
    2、在initScheduler流程时,实际我们创建了三个监听app、appSf、sf,app就是app的收发,appSf这个监听主要为surfaceflinger的工作线程服务,sf则用来通知surfaceflinger合成显示流程
    3、接着surfaceflinger::initScheduler

    mEventQueue->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(),
                               configs.late.sfWorkDuration);
    
    ///MessageQueue.cpp
    void MessageQueue::setInjector(sp<EventThreadConnection> connection) {
        ...
            mLooper->addFd(
                    tube.getFd(), 0, Looper::EVENT_INPUT,
                    [](int, int, void* data) {
                        reinterpret_cast<MessageQueue*>(data)->injectorCallback();
                        return 1; // Keep registration.
                    },
                    this);
        }
        
    void MessageQueue::Handler::handleMessage(const Message& message) {
        switch (message.what) {
            case INVALIDATE:
                mEventMask.fetch_and(~eventMaskInvalidate);
                mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime);
                break;
            case REFRESH:
                mEventMask.fetch_and(~eventMaskRefresh);
                mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime);
                break;
        }
    }
    
    //SurfaceFlinger.cpp
    void SurfaceFlinger::onMessageReceived(int32_t what, int64_t vsyncId, nsecs_t expectedVSyncTime) {
        switch (what) {
            case MessageQueue::INVALIDATE: {
                onMessageInvalidate(vsyncId, expectedVSyncTime);
                break;
            }
            case MessageQueue::REFRESH: {
                onMessageRefresh();
                break;
            }
        }
    }
    

    网上很多文章都是从SurfaceFlinger::onMessageReceived

    surfaceflinger绘制流程小结
    本节主要讲两个部分
    第一部分:app的layer如何和surfaceflinger连接起来
    第二部分:vsync分发流程
    Vsync流程
    1、代码流程从如何从HWC接收Vsync信号开始
    2、initScheduler初始化部分、app请求Vsync、app接收Vsync、surfaceflinger接收Vysnc 四个部分流程结合
    3、EventThread监听Vsync、connection建立连接、Choreographer衔接app和surfaceflinger、Dispatcher分发vsync
    4、这里挑选的都是vsync比较主线的几个流程,理清他们,理解vsync分发应该没问题。
    5、还有一个从hwc传递vsync到eventthread这个流程有兴趣的可以自己去阅读一下源码
    整条线:
    app startactivity时创建surface和底层layer的连接,app开始绘制时请求下一个vysnc信号,vsync信号分发回app,app开始把视图绘制到layer,最后送显

    五、写在最后

    本文主要讲了文章开头提到的,surfaceflinger的初始化,底层handler消息机制,surfaceflinger的绘制流程(surface和layer连接&vsync分发)。希望通过本篇文章,能对surfaceflinger总体有个清晰的认知。

    read the fucking source code!

    相关文章

      网友评论

        本文标题:Android graphics(三) surfacefling

        本文链接:https://www.haomeiwen.com/subject/hzcubrtx.html