美文网首页
科学计算库pandas执行示例

科学计算库pandas执行示例

作者: 程序媛啊 | 来源:发表于2020-10-10 17:05 被阅读0次

    pandas1

    import pandas
    food_info = pandas.read_csv("food_info.csv")
    print(type(food_info))
    print (food_info.dtypes)
    <class 'pandas.core.frame.DataFrame'>
    NDB_No               int64
    Shrt_Desc           object
    Water_(g)          float64
    Energ_Kcal           int64
    Protein_(g)        float64
    Lipid_Tot_(g)      float64
    Ash_(g)            float64
    Carbohydrt_(g)     float64
    Fiber_TD_(g)       float64
    Sugar_Tot_(g)      float64
    Calcium_(mg)       float64
    Iron_(mg)          float64
    Magnesium_(mg)     float64
    Phosphorus_(mg)    float64
    Potassium_(mg)     float64
    Sodium_(mg)        float64
    Zinc_(mg)          float64
    Copper_(mg)        float64
    Manganese_(mg)     float64
    Selenium_(mcg)     float64
    Vit_C_(mg)         float64
    Thiamin_(mg)       float64
    Riboflavin_(mg)    float64
    Niacin_(mg)        float64
    Vit_B6_(mg)        float64
    Vit_B12_(mcg)      float64
    Vit_A_IU           float64
    Vit_A_RAE          float64
    Vit_E_(mg)         float64
    Vit_D_mcg          float64
    Vit_D_IU           float64
    Vit_K_(mcg)        float64
    FA_Sat_(g)         float64
    FA_Mono_(g)        float64
    FA_Poly_(g)        float64
    Cholestrl_(mg)     float64
    dtype: object
    first_rows = food_info.head()
    print (first_rows)
    print (food_info.head(3))
    print (food_info.columns)
    print (food_info.shape)
       NDB_No                 Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  \
    0    1001          BUTTER WITH SALT      15.87         717         0.85   
    1    1002  BUTTER WHIPPED WITH SALT      15.87         717         0.85   
    2    1003      BUTTER OIL ANHYDROUS       0.24         876         0.28   
    3    1004               CHEESE BLUE      42.41         353        21.40   
    4    1005              CHEESE BRICK      41.11         371        23.24   
    
       Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  ...  \
    0          81.11     2.11            0.06           0.0           0.06  ...   
    1          81.11     2.11            0.06           0.0           0.06  ...   
    2          99.48     0.00            0.00           0.0           0.00  ...   
    3          28.74     5.11            2.34           0.0           0.50  ...   
    4          29.68     3.18            2.79           0.0           0.51  ...   
    
       Vit_A_IU  Vit_A_RAE  Vit_E_(mg)  Vit_D_mcg  Vit_D_IU  Vit_K_(mcg)  \
    0    2499.0      684.0        2.32        1.5      60.0          7.0   
    1    2499.0      684.0        2.32        1.5      60.0          7.0   
    2    3069.0      840.0        2.80        1.8      73.0          8.6   
    3     721.0      198.0        0.25        0.5      21.0          2.4   
    4    1080.0      292.0        0.26        0.5      22.0          2.5   
    
       FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  Cholestrl_(mg)  
    0      51.368       21.021        3.043           215.0  
    1      50.489       23.426        3.012           219.0  
    2      61.924       28.732        3.694           256.0  
    3      18.669        7.778        0.800            75.0  
    4      18.764        8.598        0.784            94.0  
    
    [5 rows x 36 columns]
       NDB_No                 Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  \
    0    1001          BUTTER WITH SALT      15.87         717         0.85   
    1    1002  BUTTER WHIPPED WITH SALT      15.87         717         0.85   
    2    1003      BUTTER OIL ANHYDROUS       0.24         876         0.28   
    
       Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  ...  \
    0          81.11     2.11            0.06           0.0           0.06  ...   
    1          81.11     2.11            0.06           0.0           0.06  ...   
    2          99.48     0.00            0.00           0.0           0.00  ...   
    
       Vit_A_IU  Vit_A_RAE  Vit_E_(mg)  Vit_D_mcg  Vit_D_IU  Vit_K_(mcg)  \
    0    2499.0      684.0        2.32        1.5      60.0          7.0   
    1    2499.0      684.0        2.32        1.5      60.0          7.0   
    2    3069.0      840.0        2.80        1.8      73.0          8.6   
    
       FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  Cholestrl_(mg)  
    0      51.368       21.021        3.043           215.0  
    1      50.489       23.426        3.012           219.0  
    2      61.924       28.732        3.694           256.0  
    
    [3 rows x 36 columns]
    Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)',
           'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)',
           'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)',
           'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)',
           'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)',
           'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)',
           'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg',
           'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)',
           'Cholestrl_(mg)'],
          dtype='object')
    (8618, 36)
    #pandas uses zero-indexing
    #Series object representing the row at index 0.
    print (food_info.loc[0])
    ​
    # Series object representing the seventh row.
    food_info.loc[6]
    ​
    # Will throw an error: "KeyError: 'the label [8620] is not in the [index]'"
    food_info.loc[8617]
    #The object dtype is equivalent to a string in Python
    NDB_No                         1001
    Shrt_Desc          BUTTER WITH SALT
    Water_(g)                     15.87
    Energ_Kcal                      717
    Protein_(g)                    0.85
    Lipid_Tot_(g)                 81.11
    Ash_(g)                        2.11
    Carbohydrt_(g)                 0.06
    Fiber_TD_(g)                      0
    Sugar_Tot_(g)                  0.06
    Calcium_(mg)                     24
    Iron_(mg)                      0.02
    Magnesium_(mg)                    2
    Phosphorus_(mg)                  24
    Potassium_(mg)                   24
    Sodium_(mg)                     643
    Zinc_(mg)                      0.09
    Copper_(mg)                       0
    Manganese_(mg)                    0
    Selenium_(mcg)                    1
    Vit_C_(mg)                        0
    Thiamin_(mg)                  0.005
    Riboflavin_(mg)               0.034
    Niacin_(mg)                   0.042
    Vit_B6_(mg)                   0.003
    Vit_B12_(mcg)                  0.17
    Vit_A_IU                       2499
    Vit_A_RAE                       684
    Vit_E_(mg)                     2.32
    Vit_D_mcg                       1.5
    Vit_D_IU                         60
    Vit_K_(mcg)                       7
    FA_Sat_(g)                   51.368
    FA_Mono_(g)                  21.021
    FA_Poly_(g)                   3.043
    Cholestrl_(mg)                  215
    Name: 0, dtype: object
    NDB_No                        93600
    Shrt_Desc          TURTLE GREEN RAW
    Water_(g)                      78.5
    Energ_Kcal                       89
    Protein_(g)                    19.8
    Lipid_Tot_(g)                   0.5
    Ash_(g)                         1.2
    Carbohydrt_(g)                    0
    Fiber_TD_(g)                      0
    Sugar_Tot_(g)                     0
    Calcium_(mg)                    118
    Iron_(mg)                       1.4
    Magnesium_(mg)                   20
    Phosphorus_(mg)                 180
    Potassium_(mg)                  230
    Sodium_(mg)                      68
    Zinc_(mg)                         1
    Copper_(mg)                    0.25
    Manganese_(mg)                  NaN
    Selenium_(mcg)                 16.8
    Vit_C_(mg)                        0
    Thiamin_(mg)                   0.12
    Riboflavin_(mg)                0.15
    Niacin_(mg)                     1.1
    Vit_B6_(mg)                    0.12
    Vit_B12_(mcg)                     1
    Vit_A_IU                        100
    Vit_A_RAE                        30
    Vit_E_(mg)                      0.5
    Vit_D_mcg                         0
    Vit_D_IU                          0
    Vit_K_(mcg)                     0.1
    FA_Sat_(g)                    0.127
    FA_Mono_(g)                   0.088
    FA_Poly_(g)                    0.17
    Cholestrl_(mg)                   50
    Name: 8617, dtype: object
    #object - For string values
    #int - For integer values
    #float - For float values
    #datetime - For time values
    #bool - For Boolean values
    print(food_info.dtypes)
    NDB_No               int64
    Shrt_Desc           object
    Water_(g)          float64
    Energ_Kcal           int64
    Protein_(g)        float64
    Lipid_Tot_(g)      float64
    Ash_(g)            float64
    Carbohydrt_(g)     float64
    Fiber_TD_(g)       float64
    Sugar_Tot_(g)      float64
    Calcium_(mg)       float64
    Iron_(mg)          float64
    Magnesium_(mg)     float64
    Phosphorus_(mg)    float64
    Potassium_(mg)     float64
    Sodium_(mg)        float64
    Zinc_(mg)          float64
    Copper_(mg)        float64
    Manganese_(mg)     float64
    Selenium_(mcg)     float64
    Vit_C_(mg)         float64
    Thiamin_(mg)       float64
    Riboflavin_(mg)    float64
    Niacin_(mg)        float64
    Vit_B6_(mg)        float64
    Vit_B12_(mcg)      float64
    Vit_A_IU           float64
    Vit_A_RAE          float64
    Vit_E_(mg)         float64
    Vit_D_mcg          float64
    Vit_D_IU           float64
    Vit_K_(mcg)        float64
    FA_Sat_(g)         float64
    FA_Mono_(g)        float64
    FA_Poly_(g)        float64
    Cholestrl_(mg)     float64
    dtype: object
    # Returns a DataFrame containing the rows at indexes 3, 4, 5, and 6.
    food_info.loc[3:6]
    ​
    # Returns a DataFrame containing the rows at indexes 2, 5, and 10. Either of the following approaches will work.
    # Method 1
    two_five_ten = [2,5,10] 
    food_info.loc[two_five_ten]
    ​
    # Method 2
    food_info.loc[[2,5,10]]
    NDB_No  Shrt_Desc   Water_(g)   Energ_Kcal  Protein_(g) Lipid_Tot_(g)   Ash_(g) Carbohydrt_(g)  Fiber_TD_(g)    Sugar_Tot_(g)   ... Vit_A_IU    Vit_A_RAE   Vit_E_(mg)  Vit_D_mcg   Vit_D_IU    Vit_K_(mcg) FA_Sat_(g)  FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
    2   1003    BUTTER OIL ANHYDROUS    0.24    876 0.28    99.48   0.00    0.00    0.0 0.00    ... 3069.0  840.0   2.80    1.8 73.0    8.6 61.924  28.732  3.694   256.0
    5   1006    CHEESE BRIE 48.42   334 20.75   27.68   2.70    0.45    0.0 0.45    ... 592.0   174.0   0.24    0.5 20.0    2.3 17.410  8.013   0.826   100.0
    10  1011    CHEESE COLBY    38.20   394 23.76   32.11   3.36    2.57    0.0 0.52    ... 994.0   264.0   0.28    0.6 24.0    2.7 20.218  9.280   0.953   95.0
    3 rows × 36 columns
    
    ndb_col
    # Series object representing the "NDB_No" column.
    ndb_col = food_info["NDB_No"]
    print (ndb_col)
    # Alternatively, you can access a column by passing in a string variable.
    col_name = "NDB_No"
    ndb_col = food_info[col_name]
    0        1001
    1        1002
    2        1003
    3        1004
    4        1005
            ...  
    8613    83110
    8614    90240
    8615    90480
    8616    90560
    8617    93600
    Name: NDB_No, Length: 8618, dtype: int64
    columns = ["Zinc_(mg)", "Copper_(mg)"]
    zinc_copper = food_info[columns]
    print (zinc_copper)
    # Skipping the assignment.
    zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
          Zinc_(mg)  Copper_(mg)
    0          0.09        0.000
    1          0.05        0.016
    2          0.01        0.001
    3          2.66        0.040
    4          2.60        0.024
    ...         ...          ...
    8613       1.10        0.100
    8614       1.55        0.033
    8615       0.19        0.020
    8616       1.00        0.400
    8617       1.00        0.250
    
    [8618 rows x 2 columns]
    print(food_info.columns)
    print(food_info.head(2))
    col_names = food_info.columns.tolist()
    #print col_names
    gram_columns = []
    ​
    for c in col_names:
        if c.endswith("(g)"):
            gram_columns.append(c)
    gram_df = food_info[gram_columns]
    print(gram_df.head(3))
    Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)',
           'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)',
           'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)',
           'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)',
           'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)',
           'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)',
           'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg',
           'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)',
           'Cholestrl_(mg)'],
          dtype='object')
       NDB_No                 Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  \
    0    1001          BUTTER WITH SALT      15.87         717         0.85   
    1    1002  BUTTER WHIPPED WITH SALT      15.87         717         0.85   
    
       Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  ...  \
    0          81.11     2.11            0.06           0.0           0.06  ...   
    1          81.11     2.11            0.06           0.0           0.06  ...   
    
       Vit_A_IU  Vit_A_RAE  Vit_E_(mg)  Vit_D_mcg  Vit_D_IU  Vit_K_(mcg)  \
    0    2499.0      684.0        2.32        1.5      60.0          7.0   
    1    2499.0      684.0        2.32        1.5      60.0          7.0   
    
       FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  Cholestrl_(mg)  
    0      51.368       21.021        3.043           215.0  
    1      50.489       23.426        3.012           219.0  
    
    [2 rows x 36 columns]
       Water_(g)  Protein_(g)  Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  \
    0      15.87         0.85          81.11     2.11            0.06   
    1      15.87         0.85          81.11     2.11            0.06   
    2       0.24         0.28          99.48     0.00            0.00   
    
       Fiber_TD_(g)  Sugar_Tot_(g)  FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  
    0           0.0           0.06      51.368       21.021        3.043  
    1           0.0           0.06      50.489       23.426        3.012  
    2           0.0           0.00      61.924       28.732        3.694 
    

    pandas2

    import pandas
    food_info = pandas.read_csv("food_info.csv")
    print(type(food_info))
    print (food_info.dtypes)
    <class 'pandas.core.frame.DataFrame'>
    NDB_No               int64
    Shrt_Desc           object
    Water_(g)          float64
    Energ_Kcal           int64
    Protein_(g)        float64
    Lipid_Tot_(g)      float64
    Ash_(g)            float64
    Carbohydrt_(g)     float64
    Fiber_TD_(g)       float64
    Sugar_Tot_(g)      float64
    Calcium_(mg)       float64
    Iron_(mg)          float64
    Magnesium_(mg)     float64
    Phosphorus_(mg)    float64
    Potassium_(mg)     float64
    Sodium_(mg)        float64
    Zinc_(mg)          float64
    Copper_(mg)        float64
    Manganese_(mg)     float64
    Selenium_(mcg)     float64
    Vit_C_(mg)         float64
    Thiamin_(mg)       float64
    Riboflavin_(mg)    float64
    Niacin_(mg)        float64
    Vit_B6_(mg)        float64
    Vit_B12_(mcg)      float64
    Vit_A_IU           float64
    Vit_A_RAE          float64
    Vit_E_(mg)         float64
    Vit_D_mcg          float64
    Vit_D_IU           float64
    Vit_K_(mcg)        float64
    FA_Sat_(g)         float64
    FA_Mono_(g)        float64
    FA_Poly_(g)        float64
    Cholestrl_(mg)     float64
    dtype: object
    first_rows = food_info.head()
    print (first_rows)
    print (food_info.head(3))
    print (food_info.columns)
    print (food_info.shape)
       NDB_No                 Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  \
    0    1001          BUTTER WITH SALT      15.87         717         0.85   
    1    1002  BUTTER WHIPPED WITH SALT      15.87         717         0.85   
    2    1003      BUTTER OIL ANHYDROUS       0.24         876         0.28   
    3    1004               CHEESE BLUE      42.41         353        21.40   
    4    1005              CHEESE BRICK      41.11         371        23.24   
    
       Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  ...  \
    0          81.11     2.11            0.06           0.0           0.06  ...   
    1          81.11     2.11            0.06           0.0           0.06  ...   
    2          99.48     0.00            0.00           0.0           0.00  ...   
    3          28.74     5.11            2.34           0.0           0.50  ...   
    4          29.68     3.18            2.79           0.0           0.51  ...   
    
       Vit_A_IU  Vit_A_RAE  Vit_E_(mg)  Vit_D_mcg  Vit_D_IU  Vit_K_(mcg)  \
    0    2499.0      684.0        2.32        1.5      60.0          7.0   
    1    2499.0      684.0        2.32        1.5      60.0          7.0   
    2    3069.0      840.0        2.80        1.8      73.0          8.6   
    3     721.0      198.0        0.25        0.5      21.0          2.4   
    4    1080.0      292.0        0.26        0.5      22.0          2.5   
    
       FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  Cholestrl_(mg)  
    0      51.368       21.021        3.043           215.0  
    1      50.489       23.426        3.012           219.0  
    2      61.924       28.732        3.694           256.0  
    3      18.669        7.778        0.800            75.0  
    4      18.764        8.598        0.784            94.0  
    
    [5 rows x 36 columns]
       NDB_No                 Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  \
    0    1001          BUTTER WITH SALT      15.87         717         0.85   
    1    1002  BUTTER WHIPPED WITH SALT      15.87         717         0.85   
    2    1003      BUTTER OIL ANHYDROUS       0.24         876         0.28   
    
       Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  ...  \
    0          81.11     2.11            0.06           0.0           0.06  ...   
    1          81.11     2.11            0.06           0.0           0.06  ...   
    2          99.48     0.00            0.00           0.0           0.00  ...   
    
       Vit_A_IU  Vit_A_RAE  Vit_E_(mg)  Vit_D_mcg  Vit_D_IU  Vit_K_(mcg)  \
    0    2499.0      684.0        2.32        1.5      60.0          7.0   
    1    2499.0      684.0        2.32        1.5      60.0          7.0   
    2    3069.0      840.0        2.80        1.8      73.0          8.6   
    
       FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  Cholestrl_(mg)  
    0      51.368       21.021        3.043           215.0  
    1      50.489       23.426        3.012           219.0  
    2      61.924       28.732        3.694           256.0  
    
    [3 rows x 36 columns]
    Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)',
           'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)',
           'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)',
           'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)',
           'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)',
           'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)',
           'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg',
           'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)',
           'Cholestrl_(mg)'],
          dtype='object')
    (8618, 36)
    #pandas uses zero-indexing
    #Series object representing the row at index 0.
    print (food_info.loc[0])
    ​
    # Series object representing the seventh row.
    food_info.loc[6]
    ​
    # Will throw an error: "KeyError: 'the label [8620] is not in the [index]'"
    food_info.loc[8617]
    #The object dtype is equivalent to a string in Python
    NDB_No                         1001
    Shrt_Desc          BUTTER WITH SALT
    Water_(g)                     15.87
    Energ_Kcal                      717
    Protein_(g)                    0.85
    Lipid_Tot_(g)                 81.11
    Ash_(g)                        2.11
    Carbohydrt_(g)                 0.06
    Fiber_TD_(g)                      0
    Sugar_Tot_(g)                  0.06
    Calcium_(mg)                     24
    Iron_(mg)                      0.02
    Magnesium_(mg)                    2
    Phosphorus_(mg)                  24
    Potassium_(mg)                   24
    Sodium_(mg)                     643
    Zinc_(mg)                      0.09
    Copper_(mg)                       0
    Manganese_(mg)                    0
    Selenium_(mcg)                    1
    Vit_C_(mg)                        0
    Thiamin_(mg)                  0.005
    Riboflavin_(mg)               0.034
    Niacin_(mg)                   0.042
    Vit_B6_(mg)                   0.003
    Vit_B12_(mcg)                  0.17
    Vit_A_IU                       2499
    Vit_A_RAE                       684
    Vit_E_(mg)                     2.32
    Vit_D_mcg                       1.5
    Vit_D_IU                         60
    Vit_K_(mcg)                       7
    FA_Sat_(g)                   51.368
    FA_Mono_(g)                  21.021
    FA_Poly_(g)                   3.043
    Cholestrl_(mg)                  215
    Name: 0, dtype: object
    NDB_No                        93600
    Shrt_Desc          TURTLE GREEN RAW
    Water_(g)                      78.5
    Energ_Kcal                       89
    Protein_(g)                    19.8
    Lipid_Tot_(g)                   0.5
    Ash_(g)                         1.2
    Carbohydrt_(g)                    0
    Fiber_TD_(g)                      0
    Sugar_Tot_(g)                     0
    Calcium_(mg)                    118
    Iron_(mg)                       1.4
    Magnesium_(mg)                   20
    Phosphorus_(mg)                 180
    Potassium_(mg)                  230
    Sodium_(mg)                      68
    Zinc_(mg)                         1
    Copper_(mg)                    0.25
    Manganese_(mg)                  NaN
    Selenium_(mcg)                 16.8
    Vit_C_(mg)                        0
    Thiamin_(mg)                   0.12
    Riboflavin_(mg)                0.15
    Niacin_(mg)                     1.1
    Vit_B6_(mg)                    0.12
    Vit_B12_(mcg)                     1
    Vit_A_IU                        100
    Vit_A_RAE                        30
    Vit_E_(mg)                      0.5
    Vit_D_mcg                         0
    Vit_D_IU                          0
    Vit_K_(mcg)                     0.1
    FA_Sat_(g)                    0.127
    FA_Mono_(g)                   0.088
    FA_Poly_(g)                    0.17
    Cholestrl_(mg)                   50
    Name: 8617, dtype: object
    #object - For string values
    #int - For integer values
    #float - For float values
    #datetime - For time values
    #bool - For Boolean values
    print(food_info.dtypes)
    NDB_No               int64
    Shrt_Desc           object
    Water_(g)          float64
    Energ_Kcal           int64
    Protein_(g)        float64
    Lipid_Tot_(g)      float64
    Ash_(g)            float64
    Carbohydrt_(g)     float64
    Fiber_TD_(g)       float64
    Sugar_Tot_(g)      float64
    Calcium_(mg)       float64
    Iron_(mg)          float64
    Magnesium_(mg)     float64
    Phosphorus_(mg)    float64
    Potassium_(mg)     float64
    Sodium_(mg)        float64
    Zinc_(mg)          float64
    Copper_(mg)        float64
    Manganese_(mg)     float64
    Selenium_(mcg)     float64
    Vit_C_(mg)         float64
    Thiamin_(mg)       float64
    Riboflavin_(mg)    float64
    Niacin_(mg)        float64
    Vit_B6_(mg)        float64
    Vit_B12_(mcg)      float64
    Vit_A_IU           float64
    Vit_A_RAE          float64
    Vit_E_(mg)         float64
    Vit_D_mcg          float64
    Vit_D_IU           float64
    Vit_K_(mcg)        float64
    FA_Sat_(g)         float64
    FA_Mono_(g)        float64
    FA_Poly_(g)        float64
    Cholestrl_(mg)     float64
    dtype: object
    # Returns a DataFrame containing the rows at indexes 3, 4, 5, and 6.
    food_info.loc[3:6]
    ​
    # Returns a DataFrame containing the rows at indexes 2, 5, and 10. Either of the following approaches will work.
    # Method 1
    two_five_ten = [2,5,10] 
    food_info.loc[two_five_ten]
    ​
    # Method 2
    food_info.loc[[2,5,10]]
    NDB_No  Shrt_Desc   Water_(g)   Energ_Kcal  Protein_(g) Lipid_Tot_(g)   Ash_(g) Carbohydrt_(g)  Fiber_TD_(g)    Sugar_Tot_(g)   ... Vit_A_IU    Vit_A_RAE   Vit_E_(mg)  Vit_D_mcg   Vit_D_IU    Vit_K_(mcg) FA_Sat_(g)  FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
    2   1003    BUTTER OIL ANHYDROUS    0.24    876 0.28    99.48   0.00    0.00    0.0 0.00    ... 3069.0  840.0   2.80    1.8 73.0    8.6 61.924  28.732  3.694   256.0
    5   1006    CHEESE BRIE 48.42   334 20.75   27.68   2.70    0.45    0.0 0.45    ... 592.0   174.0   0.24    0.5 20.0    2.3 17.410  8.013   0.826   100.0
    10  1011    CHEESE COLBY    38.20   394 23.76   32.11   3.36    2.57    0.0 0.52    ... 994.0   264.0   0.28    0.6 24.0    2.7 20.218  9.280   0.953   95.0
    3 rows × 36 columns
    
    ndb_col
    # Series object representing the "NDB_No" column.
    ndb_col = food_info["NDB_No"]
    print (ndb_col)
    # Alternatively, you can access a column by passing in a string variable.
    col_name = "NDB_No"
    ndb_col = food_info[col_name]
    0        1001
    1        1002
    2        1003
    3        1004
    4        1005
            ...  
    8613    83110
    8614    90240
    8615    90480
    8616    90560
    8617    93600
    Name: NDB_No, Length: 8618, dtype: int64
    columns = ["Zinc_(mg)", "Copper_(mg)"]
    zinc_copper = food_info[columns]
    print (zinc_copper)
    # Skipping the assignment.
    zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
          Zinc_(mg)  Copper_(mg)
    0          0.09        0.000
    1          0.05        0.016
    2          0.01        0.001
    3          2.66        0.040
    4          2.60        0.024
    ...         ...          ...
    8613       1.10        0.100
    8614       1.55        0.033
    8615       0.19        0.020
    8616       1.00        0.400
    8617       1.00        0.250
    
    [8618 rows x 2 columns]
    print(food_info.columns)
    print(food_info.head(2))
    col_names = food_info.columns.tolist()
    #print col_names
    gram_columns = []
    ​
    for c in col_names:
        if c.endswith("(g)"):
            gram_columns.append(c)
    gram_df = food_info[gram_columns]
    print(gram_df.head(3))
    Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)',
           'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)',
           'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)',
           'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)',
           'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)',
           'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)',
           'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg',
           'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)',
           'Cholestrl_(mg)'],
          dtype='object')
       NDB_No                 Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  \
    0    1001          BUTTER WITH SALT      15.87         717         0.85   
    1    1002  BUTTER WHIPPED WITH SALT      15.87         717         0.85   
    
       Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  ...  \
    0          81.11     2.11            0.06           0.0           0.06  ...   
    1          81.11     2.11            0.06           0.0           0.06  ...   
    
       Vit_A_IU  Vit_A_RAE  Vit_E_(mg)  Vit_D_mcg  Vit_D_IU  Vit_K_(mcg)  \
    0    2499.0      684.0        2.32        1.5      60.0          7.0   
    1    2499.0      684.0        2.32        1.5      60.0          7.0   
    
       FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  Cholestrl_(mg)  
    0      51.368       21.021        3.043           215.0  
    1      50.489       23.426        3.012           219.0  
    
    [2 rows x 36 columns]
       Water_(g)  Protein_(g)  Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  \
    0      15.87         0.85          81.11     2.11            0.06   
    1      15.87         0.85          81.11     2.11            0.06   
    2       0.24         0.28          99.48     0.00            0.00   
    
       Fiber_TD_(g)  Sugar_Tot_(g)  FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  
    0           0.0           0.06      51.368       21.021        3.043  
    1           0.0           0.06      50.489       23.426        3.012  
    2           0.0           0.00      61.924       28.732        3.694 
    

    pandas3

    import pandas as pd
    import numpy as np
    titanic_survival = pd.read_csv("titanic_train.csv")
    titanic_survival.head()
    PassengerId Survived    Pclass  Name    Sex Age SibSp   Parch   Ticket  Fare    Cabin   Embarked
    0   1   0   3   Braund, Mr. Owen Harris male    22.0    1   0   A/5 21171   7.2500  NaN S
    1   2   1   1   Cumings, Mrs. John Bradley (Florence Briggs Th...   female  38.0    1   0   PC 17599    71.2833 C85 C
    2   3   1   3   Heikkinen, Miss. Laina  female  26.0    0   0   STON/O2. 3101282    7.9250  NaN S
    3   4   1   1   Futrelle, Mrs. Jacques Heath (Lily May Peel)    female  35.0    1   0   113803  53.1000 C123    S
    4   5   0   3   Allen, Mr. William Henry    male    35.0    0   0   373450  8.0500  NaN S
    #The Pandas library uses NaN, which stands for "not a number", to indicate a missing value.
    #we can use the pandas.isnull() function which takes a pandas series and returns a series of True and False values
    age = titanic_survival["Age"]
    print(age.loc[0:10])
    age_is_null = pd.isnull(age)
    print (age_is_null)
    age_null_true = age[age_is_null]
    print (age_null_true)
    age_null_count = len(age_null_true)
    print(age_null_count)
    0     22.0
    1     38.0
    2     26.0
    3     35.0
    4     35.0
    5      NaN
    6     54.0
    7      2.0
    8     27.0
    9     14.0
    10     4.0
    Name: Age, dtype: float64
    0      False
    1      False
    2      False
    3      False
    4      False
           ...  
    886    False
    887    False
    888     True
    889    False
    890    False
    Name: Age, Length: 891, dtype: bool
    5     NaN
    17    NaN
    19    NaN
    26    NaN
    28    NaN
           ..
    859   NaN
    863   NaN
    868   NaN
    878   NaN
    888   NaN
    Name: Age, Length: 177, dtype: float64
    177
    #The result of this is that mean_age would be nan. This is because any calculations we do with a null value also result in a null value
    mean_age = sum(titanic_survival["Age"]) / len(titanic_survival["Age"])
    print (mean_age)
    nan
    #we have to filter out the missing values before we calculate the mean.
    good_ages = titanic_survival["Age"][age_is_null == False]
    print (good_ages)
    correct_mean_age = sum(good_ages) / len(good_ages)
    print (correct_mean_age)
    0      22.0
    1      38.0
    2      26.0
    3      35.0
    4      35.0
           ... 
    885    39.0
    886    27.0
    887    19.0
    889    26.0
    890    32.0
    Name: Age, Length: 714, dtype: float64
    29.69911764705882
    missing data is so common that many pandas methods automatically filter for it
    # missing data is so common that many pandas methods automatically filter for it
    correct_mean_age = titanic_survival["Age"].mean()
    print correct_mean_age
    29.6991176471
    #mean fare for each class
    passenger_classes = [1, 2, 3]
    fares_by_class = {}
    for this_class in passenger_classes:
        pclass_rows = titanic_survival[titanic_survival["Pclass"] == this_class]
        pclass_fares = pclass_rows["Fare"]
        fare_for_class = pclass_fares.mean()
        fares_by_class[this_class] = fare_for_class
    print (fares_by_class)
    {1: 84.15468749999992, 2: 20.66218315217391, 3: 13.675550101832997}
    passenger_survival
    #index tells the method which column to group by
    #values is the column that we want to apply the calculation to
    #aggfunc specifies the calculation we want to perform
    passenger_survival = titanic_survival.pivot_table(index="Pclass", values="Survived", aggfunc=np.mean)
    print (passenger_survival)
            Survived
    Pclass          
    1       0.629630
    2       0.472826
    3       0.242363
    passenger_age = titanic_survival.pivot_table(index="Pclass", values="Age")
    print(passenger_age)
                  Age
    Pclass           
    1       38.233441
    2       29.877630
    3       25.140620
    port_stats = titanic_survival.pivot_table(index="Embarked", values=["Fare","Survived"], aggfunc=np.sum)
    print(port_stats)
                    Fare  Survived
    Embarked                      
    C         10072.2962        93
    Q          1022.2543        30
    S         17439.3988       217
    #specifying axis=1 or axis='columns' will drop any columns that have null values
    drop_na_columns = titanic_survival.dropna(axis=1)
    new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age", "Sex"])
    print (new_titanic_survival)
         PassengerId  Survived  Pclass  \
    0              1         0       3   
    1              2         1       1   
    2              3         1       3   
    3              4         1       1   
    4              5         0       3   
    ..           ...       ...     ...   
    885          886         0       3   
    886          887         0       2   
    887          888         1       1   
    889          890         1       1   
    890          891         0       3   
    
                                                      Name     Sex   Age  SibSp  \
    0                              Braund, Mr. Owen Harris    male  22.0      1   
    1    Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   
    2                               Heikkinen, Miss. Laina  female  26.0      0   
    3         Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   
    4                             Allen, Mr. William Henry    male  35.0      0   
    ..                                                 ...     ...   ...    ...   
    885               Rice, Mrs. William (Margaret Norton)  female  39.0      0   
    886                              Montvila, Rev. Juozas    male  27.0      0   
    887                       Graham, Miss. Margaret Edith  female  19.0      0   
    889                              Behr, Mr. Karl Howell    male  26.0      0   
    890                                Dooley, Mr. Patrick    male  32.0      0   
    
         Parch            Ticket     Fare Cabin Embarked  
    0        0         A/5 21171   7.2500   NaN        S  
    1        0          PC 17599  71.2833   C85        C  
    2        0  STON/O2. 3101282   7.9250   NaN        S  
    3        0            113803  53.1000  C123        S  
    4        0            373450   8.0500   NaN        S  
    ..     ...               ...      ...   ...      ...  
    885      5            382652  29.1250   NaN        Q  
    886      0            211536  13.0000   NaN        S  
    887      0            112053  30.0000   B42        S  
    889      0            111369  30.0000  C148        C  
    890      0            370376   7.7500   NaN        Q  
    
    [714 rows x 12 columns]
    row_index_83_age
    row_index_83_age = titanic_survival.loc[83,"Age"]
    row_index_1000_pclass = titanic_survival.loc[766,"Pclass"]
    print (row_index_83_age)
    print (row_index_1000_pclass)
    28.0
    1
    i
    new_titanic_survival = titanic_survival.sort_values("Age",ascending=False)
    print (new_titanic_survival[0:10])
    itanic_reindexed = new_titanic_survival.reset_index(drop=True)
    print (itanic_reindexed.iloc[0:10])
         PassengerId  Survived  Pclass                                  Name  \
    630          631         1       1  Barkworth, Mr. Algernon Henry Wilson   
    851          852         0       3                   Svensson, Mr. Johan   
    493          494         0       1               Artagaveytia, Mr. Ramon   
    96            97         0       1             Goldschmidt, Mr. George B   
    116          117         0       3                  Connors, Mr. Patrick   
    672          673         0       2           Mitchell, Mr. Henry Michael   
    745          746         0       1          Crosby, Capt. Edward Gifford   
    33            34         0       2                 Wheadon, Mr. Edward H   
    54            55         0       1        Ostby, Mr. Engelhart Cornelius   
    280          281         0       3                      Duane, Mr. Frank   
    
          Sex   Age  SibSp  Parch      Ticket     Fare Cabin Embarked  
    630  male  80.0      0      0       27042  30.0000   A23        S  
    851  male  74.0      0      0      347060   7.7750   NaN        S  
    493  male  71.0      0      0    PC 17609  49.5042   NaN        C  
    96   male  71.0      0      0    PC 17754  34.6542    A5        C  
    116  male  70.5      0      0      370369   7.7500   NaN        Q  
    672  male  70.0      0      0  C.A. 24580  10.5000   NaN        S  
    745  male  70.0      1      1   WE/P 5735  71.0000   B22        S  
    33   male  66.0      0      0  C.A. 24579  10.5000   NaN        S  
    54   male  65.0      0      1      113509  61.9792   B30        C  
    280  male  65.0      0      0      336439   7.7500   NaN        Q  
       PassengerId  Survived  Pclass                                  Name   Sex  \
    0          631         1       1  Barkworth, Mr. Algernon Henry Wilson  male   
    1          852         0       3                   Svensson, Mr. Johan  male   
    2          494         0       1               Artagaveytia, Mr. Ramon  male   
    3           97         0       1             Goldschmidt, Mr. George B  male   
    4          117         0       3                  Connors, Mr. Patrick  male   
    5          673         0       2           Mitchell, Mr. Henry Michael  male   
    6          746         0       1          Crosby, Capt. Edward Gifford  male   
    7           34         0       2                 Wheadon, Mr. Edward H  male   
    8           55         0       1        Ostby, Mr. Engelhart Cornelius  male   
    9          281         0       3                      Duane, Mr. Frank  male   
    
        Age  SibSp  Parch      Ticket     Fare Cabin Embarked  
    0  80.0      0      0       27042  30.0000   A23        S  
    1  74.0      0      0      347060   7.7750   NaN        S  
    2  71.0      0      0    PC 17609  49.5042   NaN        C  
    3  71.0      0      0    PC 17754  34.6542    A5        C  
    4  70.5      0      0      370369   7.7500   NaN        Q  
    5  70.0      0      0  C.A. 24580  10.5000   NaN        S  
    6  70.0      1      1   WE/P 5735  71.0000   B22        S  
    7  66.0      0      0  C.A. 24579  10.5000   NaN        S  
    8  65.0      0      1      113509  61.9792   B30        C  
    9  65.0      0      0      336439   7.7500   NaN        Q  
    # This function returns the hundredth item from a series
    def hundredth_row(column):
        # Extract the hundredth item
        hundredth_item = column.iloc[99]
        return hundredth_item
    ​
    # Return the hundredth item from each column
    hundredth_row = titanic_survival.apply(hundredth_row)
    print (hundredth_row)
    PassengerId                  100
    Survived                       0
    Pclass                         2
    Name           Kantor, Mr. Sinai
    Sex                         male
    Age                           34
    SibSp                          1
    Parch                          0
    Ticket                    244367
    Fare                          26
    Cabin                        NaN
    Embarked                       S
    dtype: object
    def not_null_count(column):
        column_null = pd.isnull(column)
        null = column[column_null]
        return len(null)
    ​
    column_null_count = titanic_survival.apply(not_null_count)
    print (column_null_count)
    PassengerId      0
    Survived         0
    Pclass           0
    Name             0
    Sex              0
    Age            177
    SibSp            0
    Parch            0
    Ticket           0
    Fare             0
    Cabin          687
    Embarked         2
    dtype: int64
    #By passing in the axis=1 argument, we can use the DataFrame.apply() method to iterate over rows instead of columns.
    def which_class(row):
        pclass = row['Pclass']
        if pd.isnull(pclass):
            return "Unknown"
        elif pclass == 1:
            return "First Class"
        elif pclass == 2:
            return "Second Class"
        elif pclass == 3:
            return "Third Class"
    ​
    classes = titanic_survival.apply(which_class, axis=1)
    print (classes)
    0       Third Class
    1       First Class
    2       Third Class
    3       First Class
    4       Third Class
               ...     
    886    Second Class
    887     First Class
    888     Third Class
    889     First Class
    890     Third Class
    Length: 891, dtype: object
    minor
    def is_minor(row):
        if row["Age"] < 18:
            return True
        else:
            return False
    ​
    minors = titanic_survival.apply(is_minor, axis=1)
    print (minors)
    ​
    def generate_age_label(row):
        age = row["Age"]
        if pd.isnull(age):
            return "unknown"
        elif age < 18:
            return "minor"
        else:
            return "adult"
    ​
    age_labels = titanic_survival.apply(generate_age_label, axis=1)
    print (age_labels)
    0      False
    1      False
    2      False
    3      False
    4      False
           ...  
    886    False
    887    False
    888    False
    889    False
    890    False
    Length: 891, dtype: bool
    0        adult
    1        adult
    2        adult
    3        adult
    4        adult
            ...   
    886      adult
    887      adult
    888    unknown
    889      adult
    890      adult
    Length: 891, dtype: object
    titanic_survival['age_labels'] = age_labels
    age_group_survival = titanic_survival.pivot_table(index="age_labels", values="Survived")
    print (age_group_survival)
                Survived
    age_labels          
    adult       0.381032
    minor       0.539823
    unknown     0.293785
    

    pandas4

    #Series (collection of values)
    #DataFrame (collection of Series objects)
    #Panel (collection of DataFrame objects)
    #A Series object can hold many data types, including
    #float - for representing float values
    #int - for representing integer values
    #bool - for representing Boolean values
    #datetime64[ns] - for representing date & time, without time-zone
    #datetime64[ns, tz] - for representing date & time, with time-zone
    #timedelta[ns] - for representing differences in dates & times (seconds, minutes, etc.)
    #category - for representing categorical values
    #object - for representing String values
    ​
    #FILM - film name
    #RottenTomatoes - Rotten Tomatoes critics average score
    #RottenTomatoes_User - Rotten Tomatoes user average score
    #RT_norm - Rotten Tomatoes critics average score (normalized to a 0 to 5 point system)
    #RT_user_norm - Rotten Tomatoes user average score (normalized to a 0 to 5 point system)
    #Metacritic - Metacritic critics average score
    #Metacritic_User - Metacritic user average score
    RottenTomatoes
    import pandas as pd
    fandango = pd.read_csv('fandango_score_comparison.csv')
    series_film = fandango['FILM']
    print(series_film[0:5])
    series_rt = fandango['RottenTomatoes']
    print (series_rt[0:5])
    0    Avengers: Age of Ultron (2015)
    1                 Cinderella (2015)
    2                    Ant-Man (2015)
    3            Do You Believe? (2015)
    4     Hot Tub Time Machine 2 (2015)
    Name: FILM, dtype: object
    0    74
    1    85
    2    80
    3    18
    4    14
    Name: RottenTomatoes, dtype: int64
    Minions (2015)
    # Import the Series object from pandas
    from pandas import Series
    ​
    film_names = series_film.values
    print (type(film_names))
    print (film_names)
    rt_scores = series_rt.values
    print (rt_scores)
    series_custom = Series(rt_scores , index=film_names)
    print (series_custom)
    series_custom[['Minions (2015)', 'Leviathan (2014)']]
    <class 'numpy.ndarray'>
    ['Avengers: Age of Ultron (2015)' 'Cinderella (2015)' 'Ant-Man (2015)'
     'Do You Believe? (2015)' 'Hot Tub Time Machine 2 (2015)'
     'The Water Diviner (2015)' 'Irrational Man (2015)' 'Top Five (2014)'
     'Shaun the Sheep Movie (2015)' 'Love & Mercy (2015)'
     'Far From The Madding Crowd (2015)' 'Black Sea (2015)' 'Leviathan (2014)'
     'Unbroken (2014)' 'The Imitation Game (2014)' 'Taken 3 (2015)'
     'Ted 2 (2015)' 'Southpaw (2015)'
     'Night at the Museum: Secret of the Tomb (2014)' 'Pixels (2015)'
     'McFarland, USA (2015)' 'Insidious: Chapter 3 (2015)'
     'The Man From U.N.C.L.E. (2015)' 'Run All Night (2015)'
     'Trainwreck (2015)' 'Selma (2014)' 'Ex Machina (2015)'
     'Still Alice (2015)' 'Wild Tales (2014)' 'The End of the Tour (2015)'
     'Red Army (2015)' 'When Marnie Was There (2015)'
     'The Hunting Ground (2015)' 'The Boy Next Door (2015)' 'Aloha (2015)'
     'The Loft (2015)' '5 Flights Up (2015)' 'Welcome to Me (2015)'
     'Saint Laurent (2015)' 'Maps to the Stars (2015)'
     "I'll See You In My Dreams (2015)" 'Timbuktu (2015)' 'About Elly (2015)'
     'The Diary of a Teenage Girl (2015)'
     'Kingsman: The Secret Service (2015)' 'Tomorrowland (2015)'
     'The Divergent Series: Insurgent (2015)' 'Annie (2014)'
     'Fantastic Four (2015)' 'Terminator Genisys (2015)'
     'Pitch Perfect 2 (2015)' 'Entourage (2015)' 'The Age of Adaline (2015)'
     'Hot Pursuit (2015)' 'The DUFF (2015)' 'Black or White (2015)'
     'Project Almanac (2015)' 'Ricki and the Flash (2015)'
     'Seventh Son (2015)' 'Mortdecai (2015)' 'Unfinished Business (2015)'
     'American Ultra (2015)' 'True Story (2015)' 'Child 44 (2015)'
     'Dark Places (2015)' 'Birdman (2014)' 'The Gift (2015)'
     'Unfriended (2015)' 'Monkey Kingdom (2015)' 'Mr. Turner (2014)'
     'Seymour: An Introduction (2015)' 'The Wrecking Crew (2015)'
     'American Sniper (2015)' 'Furious 7 (2015)'
     'The Hobbit: The Battle of the Five Armies (2014)' 'San Andreas (2015)'
     'Straight Outta Compton (2015)' 'Vacation (2015)' 'Chappie (2015)'
     'Poltergeist (2015)' 'Paper Towns (2015)' 'Big Eyes (2014)'
     'Blackhat (2015)' 'Self/less (2015)' 'Sinister 2 (2015)'
     'Little Boy (2015)' 'Me and Earl and The Dying Girl (2015)'
     'Maggie (2015)' 'Mad Max: Fury Road (2015)' 'Spy (2015)'
     'The SpongeBob Movie: Sponge Out of Water (2015)' 'Paddington (2015)'
     'Dope (2015)' 'What We Do in the Shadows (2015)' 'The Overnight (2015)'
     'The Salt of the Earth (2015)' 'Song of the Sea (2014)'
     'Fifty Shades of Grey (2015)' 'Get Hard (2015)' 'Focus (2015)'
     'Jupiter Ascending (2015)' 'The Gallows (2015)'
     'The Second Best Exotic Marigold Hotel (2015)' 'Strange Magic (2015)'
     'The Gunman (2015)' 'Hitman: Agent 47 (2015)' 'Cake (2015)'
     'The Vatican Tapes (2015)' 'A Little Chaos (2015)'
     'The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)'
     'Escobar: Paradise Lost (2015)' 'Into the Woods (2014)'
     'It Follows (2015)' 'Inherent Vice (2014)' 'A Most Violent Year (2014)'
     "While We're Young (2015)" 'Clouds of Sils Maria (2015)'
     'Testament of Youth (2015)' 'Infinitely Polar Bear (2015)'
     'Phoenix (2015)' 'The Wolfpack (2015)'
     'The Stanford Prison Experiment (2015)' 'Tangerine (2015)'
     'Magic Mike XXL (2015)' 'Home (2015)' 'The Wedding Ringer (2015)'
     'Woman in Gold (2015)' 'The Last Five Years (2015)'
     'Mission: Impossible – Rogue Nation (2015)' 'Amy (2015)'
     'Jurassic World (2015)' 'Minions (2015)' 'Max (2015)'
     'Paul Blart: Mall Cop 2 (2015)' 'The Longest Ride (2015)'
     'The Lazarus Effect (2015)' 'The Woman In Black 2 Angel of Death (2015)'
     'Danny Collins (2015)' 'Spare Parts (2015)' 'Serena (2015)'
     'Inside Out (2015)' 'Mr. Holmes (2015)' "'71 (2015)"
     'Two Days, One Night (2014)' 'Gett: The Trial of Viviane Amsalem (2015)'
     'Kumiko, The Treasure Hunter (2015)']
    [ 74  85  80  18  14  63  42  86  99  89  84  82  99  51  90   9  46  59
      50  17  79  59  68  60  85  99  92  88  96  92  96  89  92  10  19  11
      52  71  51  60  94  99  97  95  75  50  30  27   9  26  67  32  54   8
      71  39  34  64  12  12  11  46  45  26  26  92  93  60  94  98 100  93
      72  81  61  50  90  27  30  31  55  72  34  20  13  20  81  54  97  93
      78  98  87  96  82  96  99  25  29  57  26  16  62  17  17   7  49  13
      40  67  52  71  96  73  90  83  89  81  80  99  84  84  95  62  45  27
      52  60  92  97  71  54  35   5  31  14  22  77  52  18  98  87  97  97
     100  87]
    Avengers: Age of Ultron (2015)                74
    Cinderella (2015)                             85
    Ant-Man (2015)                                80
    Do You Believe? (2015)                        18
    Hot Tub Time Machine 2 (2015)                 14
                                                ... 
    Mr. Holmes (2015)                             87
    '71 (2015)                                    97
    Two Days, One Night (2014)                    97
    Gett: The Trial of Viviane Amsalem (2015)    100
    Kumiko, The Treasure Hunter (2015)            87
    Length: 146, dtype: int64
    Minions (2015)      54
    Leviathan (2014)    99
    dtype: int64
    # int index is also aviable
    series_custom = Series(rt_scores , index=film_names)
    series_custom[['Minions (2015)', 'Leviathan (2014)']]
    fiveten = series_custom[5:10]
    print(fiveten)
    The Water Diviner (2015)        63
    Irrational Man (2015)           42
    Top Five (2014)                 86
    Shaun the Sheep Movie (2015)    99
    Love & Mercy (2015)             89
    dtype: int64
    original_index = series_custom.index.tolist()
    print (original_index)
    sorted_index = sorted(original_index)
    sorted_by_index = series_custom.reindex(sorted_index)
    print (sorted_by_index)
    ['Avengers: Age of Ultron (2015)', 'Cinderella (2015)', 'Ant-Man (2015)', 'Do You Believe? (2015)', 'Hot Tub Time Machine 2 (2015)', 'The Water Diviner (2015)', 'Irrational Man (2015)', 'Top Five (2014)', 'Shaun the Sheep Movie (2015)', 'Love & Mercy (2015)', 'Far From The Madding Crowd (2015)', 'Black Sea (2015)', 'Leviathan (2014)', 'Unbroken (2014)', 'The Imitation Game (2014)', 'Taken 3 (2015)', 'Ted 2 (2015)', 'Southpaw (2015)', 'Night at the Museum: Secret of the Tomb (2014)', 'Pixels (2015)', 'McFarland, USA (2015)', 'Insidious: Chapter 3 (2015)', 'The Man From U.N.C.L.E. (2015)', 'Run All Night (2015)', 'Trainwreck (2015)', 'Selma (2014)', 'Ex Machina (2015)', 'Still Alice (2015)', 'Wild Tales (2014)', 'The End of the Tour (2015)', 'Red Army (2015)', 'When Marnie Was There (2015)', 'The Hunting Ground (2015)', 'The Boy Next Door (2015)', 'Aloha (2015)', 'The Loft (2015)', '5 Flights Up (2015)', 'Welcome to Me (2015)', 'Saint Laurent (2015)', 'Maps to the Stars (2015)', "I'll See You In My Dreams (2015)", 'Timbuktu (2015)', 'About Elly (2015)', 'The Diary of a Teenage Girl (2015)', 'Kingsman: The Secret Service (2015)', 'Tomorrowland (2015)', 'The Divergent Series: Insurgent (2015)', 'Annie (2014)', 'Fantastic Four (2015)', 'Terminator Genisys (2015)', 'Pitch Perfect 2 (2015)', 'Entourage (2015)', 'The Age of Adaline (2015)', 'Hot Pursuit (2015)', 'The DUFF (2015)', 'Black or White (2015)', 'Project Almanac (2015)', 'Ricki and the Flash (2015)', 'Seventh Son (2015)', 'Mortdecai (2015)', 'Unfinished Business (2015)', 'American Ultra (2015)', 'True Story (2015)', 'Child 44 (2015)', 'Dark Places (2015)', 'Birdman (2014)', 'The Gift (2015)', 'Unfriended (2015)', 'Monkey Kingdom (2015)', 'Mr. Turner (2014)', 'Seymour: An Introduction (2015)', 'The Wrecking Crew (2015)', 'American Sniper (2015)', 'Furious 7 (2015)', 'The Hobbit: The Battle of the Five Armies (2014)', 'San Andreas (2015)', 'Straight Outta Compton (2015)', 'Vacation (2015)', 'Chappie (2015)', 'Poltergeist (2015)', 'Paper Towns (2015)', 'Big Eyes (2014)', 'Blackhat (2015)', 'Self/less (2015)', 'Sinister 2 (2015)', 'Little Boy (2015)', 'Me and Earl and The Dying Girl (2015)', 'Maggie (2015)', 'Mad Max: Fury Road (2015)', 'Spy (2015)', 'The SpongeBob Movie: Sponge Out of Water (2015)', 'Paddington (2015)', 'Dope (2015)', 'What We Do in the Shadows (2015)', 'The Overnight (2015)', 'The Salt of the Earth (2015)', 'Song of the Sea (2014)', 'Fifty Shades of Grey (2015)', 'Get Hard (2015)', 'Focus (2015)', 'Jupiter Ascending (2015)', 'The Gallows (2015)', 'The Second Best Exotic Marigold Hotel (2015)', 'Strange Magic (2015)', 'The Gunman (2015)', 'Hitman: Agent 47 (2015)', 'Cake (2015)', 'The Vatican Tapes (2015)', 'A Little Chaos (2015)', 'The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)', 'Escobar: Paradise Lost (2015)', 'Into the Woods (2014)', 'It Follows (2015)', 'Inherent Vice (2014)', 'A Most Violent Year (2014)', "While We're Young (2015)", 'Clouds of Sils Maria (2015)', 'Testament of Youth (2015)', 'Infinitely Polar Bear (2015)', 'Phoenix (2015)', 'The Wolfpack (2015)', 'The Stanford Prison Experiment (2015)', 'Tangerine (2015)', 'Magic Mike XXL (2015)', 'Home (2015)', 'The Wedding Ringer (2015)', 'Woman in Gold (2015)', 'The Last Five Years (2015)', 'Mission: Impossible – Rogue Nation (2015)', 'Amy (2015)', 'Jurassic World (2015)', 'Minions (2015)', 'Max (2015)', 'Paul Blart: Mall Cop 2 (2015)', 'The Longest Ride (2015)', 'The Lazarus Effect (2015)', 'The Woman In Black 2 Angel of Death (2015)', 'Danny Collins (2015)', 'Spare Parts (2015)', 'Serena (2015)', 'Inside Out (2015)', 'Mr. Holmes (2015)', "'71 (2015)", 'Two Days, One Night (2014)', 'Gett: The Trial of Viviane Amsalem (2015)', 'Kumiko, The Treasure Hunter (2015)']
    '71 (2015)                          97
    5 Flights Up (2015)                 52
    A Little Chaos (2015)               40
    A Most Violent Year (2014)          90
    About Elly (2015)                   97
                                        ..
    What We Do in the Shadows (2015)    96
    When Marnie Was There (2015)        89
    While We're Young (2015)            83
    Wild Tales (2014)                   96
    Woman in Gold (2015)                52
    Length: 146, dtype: int64
    sc2 = series_custom.sort_index()
    sc3 = series_custom.sort_values()
    print(sc2[0:10])
    print(sc3[0:10])
    '71 (2015)                    97
    5 Flights Up (2015)           52
    A Little Chaos (2015)         40
    A Most Violent Year (2014)    90
    About Elly (2015)             97
    Aloha (2015)                  19
    American Sniper (2015)        72
    American Ultra (2015)         46
    Amy (2015)                    97
    Annie (2014)                  27
    dtype: int64
    Paul Blart: Mall Cop 2 (2015)     5
    Hitman: Agent 47 (2015)           7
    Hot Pursuit (2015)                8
    Fantastic Four (2015)             9
    Taken 3 (2015)                    9
    The Boy Next Door (2015)         10
    The Loft (2015)                  11
    Unfinished Business (2015)       11
    Mortdecai (2015)                 12
    Seventh Son (2015)               12
    dtype: int64
    series_custom
    #The values in a Series object are treated as an ndarray, the core data type in NumPy
    import numpy as np
    # Add each value with each other
    print( np.add(series_custom, series_custom))
    # Apply sine function to each value
    print (np.sin(series_custom))
    # Return the highest value (will return a single value not a Series)
    print (np.max(series_custom))
    Avengers: Age of Ultron (2015)               148
    Cinderella (2015)                            170
    Ant-Man (2015)                               160
    Do You Believe? (2015)                        36
    Hot Tub Time Machine 2 (2015)                 28
                                                ... 
    Mr. Holmes (2015)                            174
    '71 (2015)                                   194
    Two Days, One Night (2014)                   194
    Gett: The Trial of Viviane Amsalem (2015)    200
    Kumiko, The Treasure Hunter (2015)           174
    Length: 146, dtype: int64
    Avengers: Age of Ultron (2015)              -0.985146
    Cinderella (2015)                           -0.176076
    Ant-Man (2015)                              -0.993889
    Do You Believe? (2015)                      -0.750987
    Hot Tub Time Machine 2 (2015)                0.990607
                                                   ...   
    Mr. Holmes (2015)                           -0.821818
    '71 (2015)                                   0.379608
    Two Days, One Night (2014)                   0.379608
    Gett: The Trial of Viviane Amsalem (2015)   -0.506366
    Kumiko, The Treasure Hunter (2015)          -0.821818
    Length: 146, dtype: float64
    100
    #will actually return a Series object with a boolean value for each film
    #will actually return a Series object with a boolean value for each film
    series_custom > 50
    series_greater_than_50 = series_custom[series_custom > 50]
    print (series_greater_than_50)
    criteria_one = series_custom > 50
    criteria_two = series_custom < 75
    both_criteria = series_custom[criteria_one & criteria_two]
    print (both_criteria)
    Avengers: Age of Ultron (2015)                74
    Cinderella (2015)                             85
    Ant-Man (2015)                                80
    The Water Diviner (2015)                      63
    Top Five (2014)                               86
                                                ... 
    Mr. Holmes (2015)                             87
    '71 (2015)                                    97
    Two Days, One Night (2014)                    97
    Gett: The Trial of Viviane Amsalem (2015)    100
    Kumiko, The Treasure Hunter (2015)            87
    Length: 94, dtype: int64
    Avengers: Age of Ultron (2015)                                            74
    The Water Diviner (2015)                                                  63
    Unbroken (2014)                                                           51
    Southpaw (2015)                                                           59
    Insidious: Chapter 3 (2015)                                               59
    The Man From U.N.C.L.E. (2015)                                            68
    Run All Night (2015)                                                      60
    5 Flights Up (2015)                                                       52
    Welcome to Me (2015)                                                      71
    Saint Laurent (2015)                                                      51
    Maps to the Stars (2015)                                                  60
    Pitch Perfect 2 (2015)                                                    67
    The Age of Adaline (2015)                                                 54
    The DUFF (2015)                                                           71
    Ricki and the Flash (2015)                                                64
    Unfriended (2015)                                                         60
    American Sniper (2015)                                                    72
    The Hobbit: The Battle of the Five Armies (2014)                          61
    Paper Towns (2015)                                                        55
    Big Eyes (2014)                                                           72
    Maggie (2015)                                                             54
    Focus (2015)                                                              57
    The Second Best Exotic Marigold Hotel (2015)                              62
    The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)    67
    Escobar: Paradise Lost (2015)                                             52
    Into the Woods (2014)                                                     71
    Inherent Vice (2014)                                                      73
    Magic Mike XXL (2015)                                                     62
    Woman in Gold (2015)                                                      52
    The Last Five Years (2015)                                                60
    Jurassic World (2015)                                                     71
    Minions (2015)                                                            54
    Spare Parts (2015)                                                        52
    dtype: int64
    #data alignment same index
    rt_critics = Series(fandango['RottenTomatoes'].values, index=fandango['FILM'])
    rt_users = Series(fandango['RottenTomatoes_User'].values, index=fandango['FILM'])
    rt_mean = (rt_critics + rt_users)/2
    ​
    print(rt_mean)
    FILM
    Avengers: Age of Ultron (2015)               80.0
    Cinderella (2015)                            82.5
    Ant-Man (2015)                               85.0
    Do You Believe? (2015)                       51.0
    Hot Tub Time Machine 2 (2015)                21.0
                                                 ... 
    Mr. Holmes (2015)                            82.5
    '71 (2015)                                   89.5
    Two Days, One Night (2014)                   87.5
    Gett: The Trial of Viviane Amsalem (2015)    90.5
    Kumiko, The Treasure Hunter (2015)           75.0
    Length: 146, dtype: float64
    

    pandas5

    import pandas as pd
    #will return a new DataFrame that is indexed by the values in the specified column 
    #and will drop that column from the DataFrame
    #without the FILM column dropped 
    fandango = pd.read_csv('fandango_score_comparison.csv')
    print (type(fandango))
    print (fandango.index)
    fandango_films = fandango.set_index('FILM', drop=False)
    print(fandango_films.index)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex(start=0, stop=146, step=1)
    Index(['Avengers: Age of Ultron (2015)', 'Cinderella (2015)', 'Ant-Man (2015)',
           'Do You Believe? (2015)', 'Hot Tub Time Machine 2 (2015)',
           'The Water Diviner (2015)', 'Irrational Man (2015)', 'Top Five (2014)',
           'Shaun the Sheep Movie (2015)', 'Love & Mercy (2015)',
           ...
           'The Woman In Black 2 Angel of Death (2015)', 'Danny Collins (2015)',
           'Spare Parts (2015)', 'Serena (2015)', 'Inside Out (2015)',
           'Mr. Holmes (2015)', ''71 (2015)', 'Two Days, One Night (2014)',
           'Gett: The Trial of Viviane Amsalem (2015)',
           'Kumiko, The Treasure Hunter (2015)'],
          dtype='object', name='FILM', length=146)
    # Slice using either bracket notation or loc[]
    fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
    fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
    ​
    # Specific movie
    fandango_films.loc['Kumiko, The Treasure Hunter (2015)']
    ​
    # Selecting list of movies
    movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)']
    fandango_films.loc[movies]
    ​
    #When selecting multiple rows, a DataFrame is returned, 
    #but when selecting an individual row, a Series object is returned instead
    FILM    RottenTomatoes  RottenTomatoes_User Metacritic  Metacritic_User IMDB    Fandango_Stars  Fandango_Ratingvalue    RT_norm RT_user_norm    ... IMDB_norm   RT_norm_round   RT_user_norm_round  Metacritic_norm_round   Metacritic_user_norm_round  IMDB_norm_round Metacritic_user_vote_count  IMDB_user_vote_count    Fandango_votes  Fandango_Difference
    FILM                                                                                    
    Kumiko, The Treasure Hunter (2015)  Kumiko, The Treasure Hunter (2015)  87  63  68  6.4 6.7 3.5 3.5 4.35    3.15    ... 3.35    4.5 3.0 3.5 3.0 3.5 19  5289    41  0.0
    Do You Believe? (2015)  Do You Believe? (2015)  18  84  22  4.7 5.4 5.0 4.5 0.90    4.20    ... 2.70    1.0 4.0 1.0 2.5 2.5 31  3136    1793    0.5
    Ant-Man (2015)  Ant-Man (2015)  80  90  64  8.1 7.8 5.0 4.5 4.00    4.50    ... 3.90    4.0 4.5 3.0 4.0 4.0 627 103660  12055   0.5
    3 rows × 22 columns
    
    #The apply() method in Pandas allows us to specify Python logic
    #The apply() method requires you to pass in a vectorized operation 
    #that can be applied over each Series object.
    import numpy as np
    ​
    # returns the data types as a Series
    types = fandango_films.dtypes
    print (types)
    # filter data types to just floats, index attributes returns just column names
    float_columns = types[types.values == 'float64'].index
    # use bracket notation to filter columns to just float columns
    float_df = fandango_films[float_columns]
    print (float_df)
    # `x` is a Series object representing a column
    deviations = float_df.apply(lambda x: np.std(x))
    ​
    print(deviations)
    FILM                           object
    RottenTomatoes                  int64
    RottenTomatoes_User             int64
    Metacritic                      int64
    Metacritic_User               float64
    IMDB                          float64
    Fandango_Stars                float64
    Fandango_Ratingvalue          float64
    RT_norm                       float64
    RT_user_norm                  float64
    Metacritic_norm               float64
    Metacritic_user_nom           float64
    IMDB_norm                     float64
    RT_norm_round                 float64
    RT_user_norm_round            float64
    Metacritic_norm_round         float64
    Metacritic_user_norm_round    float64
    IMDB_norm_round               float64
    Metacritic_user_vote_count      int64
    IMDB_user_vote_count            int64
    Fandango_votes                  int64
    Fandango_Difference           float64
    dtype: object
                                               Metacritic_User  IMDB  \
    FILM                                                               
    Avengers: Age of Ultron (2015)                         7.1   7.8   
    Cinderella (2015)                                      7.5   7.1   
    Ant-Man (2015)                                         8.1   7.8   
    Do You Believe? (2015)                                 4.7   5.4   
    Hot Tub Time Machine 2 (2015)                          3.4   5.1   
    ...                                                    ...   ...   
    Mr. Holmes (2015)                                      7.9   7.4   
    '71 (2015)                                             7.5   7.2   
    Two Days, One Night (2014)                             8.8   7.4   
    Gett: The Trial of Viviane Amsalem (2015)              7.3   7.8   
    Kumiko, The Treasure Hunter (2015)                     6.4   6.7   
    
                                               Fandango_Stars  \
    FILM                                                        
    Avengers: Age of Ultron (2015)                        5.0   
    Cinderella (2015)                                     5.0   
    Ant-Man (2015)                                        5.0   
    Do You Believe? (2015)                                5.0   
    Hot Tub Time Machine 2 (2015)                         3.5   
    ...                                                   ...   
    Mr. Holmes (2015)                                     4.0   
    '71 (2015)                                            3.5   
    Two Days, One Night (2014)                            3.5   
    Gett: The Trial of Viviane Amsalem (2015)             3.5   
    Kumiko, The Treasure Hunter (2015)                    3.5   
    
                                               Fandango_Ratingvalue  RT_norm  \
    FILM                                                                       
    Avengers: Age of Ultron (2015)                              4.5     3.70   
    Cinderella (2015)                                           4.5     4.25   
    Ant-Man (2015)                                              4.5     4.00   
    Do You Believe? (2015)                                      4.5     0.90   
    Hot Tub Time Machine 2 (2015)                               3.0     0.70   
    ...                                                         ...      ...   
    Mr. Holmes (2015)                                           4.0     4.35   
    '71 (2015)                                                  3.5     4.85   
    Two Days, One Night (2014)                                  3.5     4.85   
    Gett: The Trial of Viviane Amsalem (2015)                   3.5     5.00   
    Kumiko, The Treasure Hunter (2015)                          3.5     4.35   
    
                                               RT_user_norm  Metacritic_norm  \
    FILM                                                                       
    Avengers: Age of Ultron (2015)                     4.30             3.30   
    Cinderella (2015)                                  4.00             3.35   
    Ant-Man (2015)                                     4.50             3.20   
    Do You Believe? (2015)                             4.20             1.10   
    Hot Tub Time Machine 2 (2015)                      1.40             1.45   
    ...                                                 ...              ...   
    Mr. Holmes (2015)                                  3.90             3.35   
    '71 (2015)                                         4.10             4.15   
    Two Days, One Night (2014)                         3.90             4.45   
    Gett: The Trial of Viviane Amsalem (2015)          4.05             4.50   
    Kumiko, The Treasure Hunter (2015)                 3.15             3.40   
    
                                               Metacritic_user_nom  IMDB_norm  \
    FILM                                                                        
    Avengers: Age of Ultron (2015)                            3.55       3.90   
    Cinderella (2015)                                         3.75       3.55   
    Ant-Man (2015)                                            4.05       3.90   
    Do You Believe? (2015)                                    2.35       2.70   
    Hot Tub Time Machine 2 (2015)                             1.70       2.55   
    ...                                                        ...        ...   
    Mr. Holmes (2015)                                         3.95       3.70   
    '71 (2015)                                                3.75       3.60   
    Two Days, One Night (2014)                                4.40       3.70   
    Gett: The Trial of Viviane Amsalem (2015)                 3.65       3.90   
    Kumiko, The Treasure Hunter (2015)                        3.20       3.35   
    
                                               RT_norm_round  RT_user_norm_round  \
    FILM                                                                           
    Avengers: Age of Ultron (2015)                       3.5                 4.5   
    Cinderella (2015)                                    4.5                 4.0   
    Ant-Man (2015)                                       4.0                 4.5   
    Do You Believe? (2015)                               1.0                 4.0   
    Hot Tub Time Machine 2 (2015)                        0.5                 1.5   
    ...                                                  ...                 ...   
    Mr. Holmes (2015)                                    4.5                 4.0   
    '71 (2015)                                           5.0                 4.0   
    Two Days, One Night (2014)                           5.0                 4.0   
    Gett: The Trial of Viviane Amsalem (2015)            5.0                 4.0   
    Kumiko, The Treasure Hunter (2015)                   4.5                 3.0   
    
                                               Metacritic_norm_round  \
    FILM                                                               
    Avengers: Age of Ultron (2015)                               3.5   
    Cinderella (2015)                                            3.5   
    Ant-Man (2015)                                               3.0   
    Do You Believe? (2015)                                       1.0   
    Hot Tub Time Machine 2 (2015)                                1.5   
    ...                                                          ...   
    Mr. Holmes (2015)                                            3.5   
    '71 (2015)                                                   4.0   
    Two Days, One Night (2014)                                   4.5   
    Gett: The Trial of Viviane Amsalem (2015)                    4.5   
    Kumiko, The Treasure Hunter (2015)                           3.5   
    
                                               Metacritic_user_norm_round  \
    FILM                                                                    
    Avengers: Age of Ultron (2015)                                    3.5   
    Cinderella (2015)                                                 4.0   
    Ant-Man (2015)                                                    4.0   
    Do You Believe? (2015)                                            2.5   
    Hot Tub Time Machine 2 (2015)                                     1.5   
    ...                                                               ...   
    Mr. Holmes (2015)                                                 4.0   
    '71 (2015)                                                        4.0   
    Two Days, One Night (2014)                                        4.5   
    Gett: The Trial of Viviane Amsalem (2015)                         3.5   
    Kumiko, The Treasure Hunter (2015)                                3.0   
    
                                               IMDB_norm_round  \
    FILM                                                         
    Avengers: Age of Ultron (2015)                         4.0   
    Cinderella (2015)                                      3.5   
    Ant-Man (2015)                                         4.0   
    Do You Believe? (2015)                                 2.5   
    Hot Tub Time Machine 2 (2015)                          2.5   
    ...                                                    ...   
    Mr. Holmes (2015)                                      3.5   
    '71 (2015)                                             3.5   
    Two Days, One Night (2014)                             3.5   
    Gett: The Trial of Viviane Amsalem (2015)              4.0   
    Kumiko, The Treasure Hunter (2015)                     3.5   
    
                                               Fandango_Difference  
    FILM                                                            
    Avengers: Age of Ultron (2015)                             0.5  
    Cinderella (2015)                                          0.5  
    Ant-Man (2015)                                             0.5  
    Do You Believe? (2015)                                     0.5  
    Hot Tub Time Machine 2 (2015)                              0.5  
    ...                                                        ...  
    Mr. Holmes (2015)                                          0.0  
    '71 (2015)                                                 0.0  
    Two Days, One Night (2014)                                 0.0  
    Gett: The Trial of Viviane Amsalem (2015)                  0.0  
    Kumiko, The Treasure Hunter (2015)                         0.0  
    
    [146 rows x 15 columns]
    Metacritic_User               1.505529
    IMDB                          0.955447
    Fandango_Stars                0.538532
    Fandango_Ratingvalue          0.501106
    RT_norm                       1.503265
    RT_user_norm                  0.997787
    Metacritic_norm               0.972522
    Metacritic_user_nom           0.752765
    IMDB_norm                     0.477723
    RT_norm_round                 1.509404
    RT_user_norm_round            1.003559
    Metacritic_norm_round         0.987561
    Metacritic_user_norm_round    0.785412
    IMDB_norm_round               0.501043
    Fandango_Difference           0.152141
    dtype: float64
    rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
    print (rt_mt_user)
    rt_mt_user.apply(lambda x: np.std(x), axis=1)
                                               RT_user_norm  Metacritic_user_nom
    FILM                                                                        
    Avengers: Age of Ultron (2015)                     4.30                 3.55
    Cinderella (2015)                                  4.00                 3.75
    Ant-Man (2015)                                     4.50                 4.05
    Do You Believe? (2015)                             4.20                 2.35
    Hot Tub Time Machine 2 (2015)                      1.40                 1.70
    ...                                                 ...                  ...
    Mr. Holmes (2015)                                  3.90                 3.95
    '71 (2015)                                         4.10                 3.75
    Two Days, One Night (2014)                         3.90                 4.40
    Gett: The Trial of Viviane Amsalem (2015)          4.05                 3.65
    Kumiko, The Treasure Hunter (2015)                 3.15                 3.20
    
    [146 rows x 2 columns]
    FILM
    Avengers: Age of Ultron (2015)               0.375
    Cinderella (2015)                            0.125
    Ant-Man (2015)                               0.225
    Do You Believe? (2015)                       0.925
    Hot Tub Time Machine 2 (2015)                0.150
                                                 ...  
    Mr. Holmes (2015)                            0.025
    '71 (2015)                                   0.175
    Two Days, One Night (2014)                   0.250
    Gett: The Trial of Viviane Amsalem (2015)    0.200
    Kumiko, The Treasure Hunter (2015)           0.025
    Length: 146, dtype: float64
    

    相关文章

      网友评论

          本文标题:科学计算库pandas执行示例

          本文链接:https://www.haomeiwen.com/subject/iarrpktx.html