1.DataLoader 使用多线程加载输入,设置num_workers
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
2.加载数据输入到CUDA 设备时设置非堵塞 non_blocking=True
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
3.使用nvidia DALI 加速load 数据
准备pipeline:
pipe = HybridValPipe(batch_size=1280,num_threads=4,device_id=0,
data_dir=testdir,crop=64,local_rank=0,world_size=1,
size=64)
pipe.build()
test_loader = DALIClassificationIterator(pipe,size=int(pipe.epoch_size("Reader") /1))
详细见:https://docs.nvidia.com/deeplearning/dali/user-guide/docs/api.html
网友评论