调用subplot()创建子图时通过设置projection='polar',便可创建一个极坐标子图,然后调用plot()在极坐标子图中绘图
# 创建极坐标轴
s = pd.Series(np.arange(20))
theta=np.arange(0,2*np.pi,0.02)
print(s.head())
print(theta[:10])
# 创建数据
fig = plt.figure(figsize=(8,4))
ax1 = plt.subplot(121, projection = 'polar')
ax2 = plt.subplot(122)
# 创建极坐标子图
# 还可以写:ax = fig.add_subplot(111,polar=True)
ax1.plot(theta,theta*3,linestyle = '--',lw=1)
ax1.plot(s, linestyle = '--', marker = '.',lw=2)
ax2.plot(theta,theta*3,linestyle = '--',lw=1)
ax2.plot(s)
plt.grid()
# 创建极坐标图,参数1为角度(弧度制),参数2为value
# lw → 线宽
image.png
# 极坐标参数设置
theta=np.arange(0,2*np.pi,0.02)
plt.figure(figsize=(8,4))
ax1= plt.subplot(121, projection='polar')
ax2= plt.subplot(122, projection='polar')
ax1.plot(theta,theta/6,'--',lw=2)
ax2.plot(theta,theta/6,'--',lw=2)
# 创建极坐标子图ax
ax2.set_theta_direction(-1)
# set_theta_direction():坐标轴正方向,默认逆时针
ax2.set_thetagrids(np.arange(0.0, 360.0, 90),['a','b','c','d'])
ax2.set_rgrids(np.arange(0.2,2,0.4))
# set_thetagrids():设置极坐标角度网格线显示及标签 → 网格和标签数量一致
# set_rgrids():设置极径网格线显示,其中参数必须是正数
ax2.set_theta_offset(np.pi/2)
# set_theta_offset():设置角度偏移,逆时针,弧度制
ax2.set_rlim(0.2,1.2)
ax2.set_rmax(2)
ax2.set_rticks(np.arange(0.1, 1.5, 0.2))
# set_rlim():设置显示的极径范围
# set_rmax():设置显示的极径最大值
# set_rticks():设置极径网格线的显示范围
image.png
x = np.random.randint(0,10,6)
y = np.random.randint(0,10,6)
print(x, y, sep=" || ")
for i, k in zip(x, y):
print(i, k)
#运行结果
[9 5 1 6 4 5]||||[5 4 7 9 4 7]
9 5
5 4
1 7
6 9
4 4
5 7
网友评论