美文网首页程序猿阵线联盟-汇总各类技术干货技术文MySQL
MySQL表的数据量大小会影响索引的选择

MySQL表的数据量大小会影响索引的选择

作者: ImClive | 来源:发表于2018-06-04 18:15 被阅读5次

    现象

    新建了一张员工表,插入了少量数据,索引中所有的字段均在where条件出现时,正确走到了idx_nap索引,但是where出现部分自左开始的索引时,却进行全表扫描,与MySQL官方所说的最左匹配原则“相悖”。

    数据背景

    CREATE TABLE `staffs` (
      `id` int(11) NOT NULL AUTO_INCREMENT,
      `name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',
      `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
      `pos` varchar(20) NOT NULL DEFAULT '' COMMENT '职位',
      `add_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
      PRIMARY KEY (`id`),
      KEY `idx_nap` (`name`,`age`,`pos`)
    ) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=utf8 COMMENT='员工记录表';
    
    表中数据如下:
    id  name    age pos     add_time
    1   July    23  dev     2018-06-04 16:02:02
    2   Clive   22  dev     2018-06-04 16:02:32
    3   Cleva   24  test    2018-06-04 16:02:38
    4   July    23  test    2018-06-04 16:12:22
    5   July    23  pre     2018-06-04 16:12:37
    6   Clive   22  pre     2018-06-04 16:12:48
    7   July    25  dev     2018-06-04 16:30:17
    

    Explain语句看下执行计划

    -- 全匹配走了索引
    explain select * from staffs where name = 'July' and age = 23 and pos = 'dev';
    id  select_type table   partitions  type    possible_keys   key key_len ref rows    filtered    Extra
    1   SIMPLE  staffs  NULL    ref idx_nap idx_nap 140 const,const,const   1   100.00  NULL
    

    开启优化器跟踪优化过程

    -- 左侧部分匹配却没有走索引,全表扫描
    explain select * from staffs where name = 'July' and age = 23;
    id  select_type table   partitions  type    possible_keys   key key_len ref rows    filtered    Extra
    1   SIMPLE  staffs2 NULL    ALL idx_nap NULL    NULL    NULL    6   50.00   Using where
    
    -- 开启优化器跟踪
    set session optimizer_trace='enabled=on';
    -- 在执行完查询语句后,在执行以下的select语句可以查看具体的优化器执行过程
    select * from information_schema.optimizer_trace;
    

    Trace部分的内容

    {
      "steps": [
        {
          "join_preparation": {
            "select#": 1,
            "steps": [
              {
                "expanded_query": "/* select#1 */ select `staffs`.`id` AS `id`,`staffs`.`name` AS `name`,`staffs`.`age` AS `age`,`staffs`.`pos` AS `pos`,`staffs`.`add_time` AS `add_time` from `staffs` where ((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))"
              }
            ]
          }
        },
        {
          "join_optimization": {
            "select#": 1,
            "steps": [
              {
                "condition_processing": {
                  "condition": "WHERE",
                  "original_condition": "((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))",
                  "steps": [
                    {
                      "transformation": "equality_propagation",
                      "resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
                    },
                    {
                      "transformation": "constant_propagation",
                      "resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
                    },
                    {
                      "transformation": "trivial_condition_removal",
                      "resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
                    }
                  ]
                }
              },
              {
                "substitute_generated_columns": {
                }
              },
              {
                "table_dependencies": [
                  {
                    "table": "`staffs`",
                    "row_may_be_null": false,
                    "map_bit": 0,
                    "depends_on_map_bits": [
                    ]
                  }
                ]
              },
              {
                "ref_optimizer_key_uses": [
                  {
                    "table": "`staffs`",
                    "field": "name",
                    "equals": "'July'",
                    "null_rejecting": false
                  },
                  {
                    "table": "`staffs`",
                    "field": "age",
                    "equals": "23",
                    "null_rejecting": false
                  }
                ]
              },
              {
                "rows_estimation": [
                  {
                    "table": "`staffs`",
                    "range_analysis": {
                      "table_scan": {
                        "rows": 6,
                        "cost": 4.3
                      },
                      "potential_range_indexes": [
                        {
                          "index": "PRIMARY",
                          "usable": false,
                          "cause": "not_applicable"
                        },
                        {
                          "index": "idx_nap",
                          "usable": true,
                          "key_parts": [
                            "name",
                            "age",
                            "pos",
                            "id"
                          ]
                        }
                      ],
                      "setup_range_conditions": [
                      ],
                      "group_index_range": {
                        "chosen": false,
                        "cause": "not_group_by_or_distinct"
                      },
                      "analyzing_range_alternatives": {
                        "range_scan_alternatives": [
                          {
                            "index": "idx_nap",
                            "ranges": [
                              "July <= name <= July AND 23 <= age <= 23"
                            ],
                            "index_dives_for_eq_ranges": true,
                            "rowid_ordered": false,
                            "using_mrr": false,
                            "index_only": false,
                            "rows": 3,
                            "cost": 4.61,
                            "chosen": false,
                            "cause": "cost"
                          }
                        ],
                        "analyzing_roworder_intersect": {
                          "usable": false,
                          "cause": "too_few_roworder_scans"
                        }
                      }
                    }
                  }
                ]
              },
              {
                "considered_execution_plans": [
                  {
                    "plan_prefix": [
                    ],
                    "table": "`staffs`",
                    "best_access_path": {
                      "considered_access_paths": [
                        {
                        //可以看到这边MySQL计算得到使用索引的成本为2.6
                          "access_type": "ref",
                          "index": "idx_nap",
                          "rows": 3,
                          "cost": 2.6,
                          "chosen": true
                        },
                        {
                        //而全表扫描计算所得的成本为2.2
                          "rows_to_scan": 6,
                          "access_type": "scan",
                          "resulting_rows": 6,
                          "cost": 2.2,
                          "chosen": true
                        }
                      ]
                    },
                    //因此选择了成本更低的scan
                    "condition_filtering_pct": 100,
                    "rows_for_plan": 6,
                    "cost_for_plan": 2.2,
                    "chosen": true
                  }
                ]
              },
              {
                "attaching_conditions_to_tables": {
                  "original_condition": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'July'))",
                  "attached_conditions_computation": [
                  ],
                  "attached_conditions_summary": [
                    {
                      "table": "`staffs`",
                      "attached": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'July'))"
                    }
                  ]
                }
              },
              {
                "refine_plan": [
                  {
                    "table": "`staffs`"
                  }
                ]
              }
            ]
          }
        },
        {
          "join_execution": {
            "select#": 1,
            "steps": [
            ]
          }
        }
      ]
    }
    

    增加表数据量

    -- 接下来增大表的数据量
    INSERT INTO `staffs` (`name`, `age`, `pos`, `add_time`)
    VALUES
        ('July', 25, 'dev', '2018-06-04 16:30:17'),
        ('July', 23, 'dev1', '2018-06-04 16:02:02'),
        ('July', 23, 'dev2', '2018-06-04 16:02:02'),
        ('July', 23, 'dev3', '2018-06-04 16:02:02'),
        ('July', 23, 'dev4', '2018-06-04 16:02:02'),
        ('July', 23, 'dev6', '2018-06-04 16:02:02'),
        ('July', 23, 'dev5', '2018-06-04 16:02:02'),
        ('July', 23, 'dev7', '2018-06-04 16:02:02'),
        ('July', 23, 'dev8', '2018-06-04 16:02:02'),
        ('July', 23, 'dev9', '2018-06-04 16:02:02'),
        ('July', 23, 'dev10', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev1', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev2', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev3', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev4', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev6', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev5', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev7', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev8', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev9', '2018-06-04 16:02:02'),
        ('Clive', 23, 'dev10', '2018-06-04 16:02:02');
    

    执行Explain

    -- 再次执行同样的查询语句,会发现走到索引上了
    explain select * from staffs where name = 'July' and age = 23;
    id  select_type table   partitions  type    possible_keys   key key_len ref rows    filtered    Extra
    1   SIMPLE  staffs  NULL    ref idx_nap idx_nap 78  const,const 13  100.00  NULL
    

    查看新的Trace内容

    -- 再看下优化器执行过程
    {
      "steps": [
        {
          "join_preparation": {
            "select#": 1,
            "steps": [
              {
                "expanded_query": "/* select#1 */ select `staffs`.`id` AS `id`,`staffs`.`name` AS `name`,`staffs`.`age` AS `age`,`staffs`.`pos` AS `pos`,`staffs`.`add_time` AS `add_time` from `staffs` where ((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))"
              }
            ]
          }
        },
        {
          "join_optimization": {
            "select#": 1,
            "steps": [
              {
                "condition_processing": {
                  "condition": "WHERE",
                  "original_condition": "((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))",
                  "steps": [
                    {
                      "transformation": "equality_propagation",
                      "resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
                    },
                    {
                      "transformation": "constant_propagation",
                      "resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
                    },
                    {
                      "transformation": "trivial_condition_removal",
                      "resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
                    }
                  ]
                }
              },
              {
                "substitute_generated_columns": {
                }
              },
              {
                "table_dependencies": [
                  {
                    "table": "`staffs`",
                    "row_may_be_null": false,
                    "map_bit": 0,
                    "depends_on_map_bits": [
                    ]
                  }
                ]
              },
              {
                "ref_optimizer_key_uses": [
                  {
                    "table": "`staffs`",
                    "field": "name",
                    "equals": "'July'",
                    "null_rejecting": false
                  },
                  {
                    "table": "`staffs`",
                    "field": "age",
                    "equals": "23",
                    "null_rejecting": false
                  }
                ]
              },
              {
                "rows_estimation": [
                  {
                    "table": "`staffs`",
                    "range_analysis": {
                      "table_scan": {
                        "rows": 27,
                        "cost": 8.5
                      },
                      "potential_range_indexes": [
                        {
                          "index": "PRIMARY",
                          "usable": false,
                          "cause": "not_applicable"
                        },
                        {
                          "index": "idx_nap",
                          "usable": true,
                          "key_parts": [
                            "name",
                            "age",
                            "pos",
                            "id"
                          ]
                        }
                      ],
                      "setup_range_conditions": [
                      ],
                      "group_index_range": {
                        "chosen": false,
                        "cause": "not_group_by_or_distinct"
                      },
                      "analyzing_range_alternatives": {
                        "range_scan_alternatives": [
                          {
                            "index": "idx_nap",
                            "ranges": [
                              "July <= name <= July AND 23 <= age <= 23"
                            ],
                            "index_dives_for_eq_ranges": true,
                            "rowid_ordered": false,
                            "using_mrr": false,
                            "index_only": false,
                            "rows": 13,
                            "cost": 16.61,
                            "chosen": false,
                            "cause": "cost"
                          }
                        ],
                        "analyzing_roworder_intersect": {
                          "usable": false,
                          "cause": "too_few_roworder_scans"
                        }
                      }
                    }
                  }
                ]
              },
              {
                "considered_execution_plans": [
                  {
                    "plan_prefix": [
                    ],
                    "table": "`staffs`",
                    "best_access_path": {
                      "considered_access_paths": [
                        {
                        //使用索引的成本变为了5.3
                          "access_type": "ref",
                          "index": "idx_nap",
                          "rows": 13,
                          "cost": 5.3,
                          "chosen": true
                        },
                        {
                        //scan的成本变为了6.4
                          "rows_to_scan": 27,
                          "access_type": "scan",
                          "resulting_rows": 27,
                          "cost": 6.4,
                          "chosen": false
                        }
                      ]
                    },
                    //使用索引查询的成本更低,因此选择了走索引
                    "condition_filtering_pct": 100,
                    "rows_for_plan": 13,
                    "cost_for_plan": 5.3,
                    "chosen": true
                  }
                ]
              },
              {
                "attaching_conditions_to_tables": {
                  "original_condition": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'July'))",
                  "attached_conditions_computation": [
                  ],
                  "attached_conditions_summary": [
                    {
                      "table": "`staffs`",
                      "attached": null
                    }
                  ]
                }
              },
              {
                "refine_plan": [
                  {
                    "table": "`staffs`"
                  }
                ]
              }
            ]
          }
        },
        {
          "join_execution": {
            "select#": 1,
            "steps": [
            ]
          }
        }
      ]
    }
    

    结论

    MySQL表数据量的大小,会影响索引的选择,具体的情况还是通过Explain和Optimizer Trace来查看与分析。

    相关文章

      网友评论

        本文标题:MySQL表的数据量大小会影响索引的选择

        本文链接:https://www.haomeiwen.com/subject/ibbysftx.html