1. 36氪(36kr)数据----写在前面
今天抓取一个新闻媒体,36kr的文章内容,也是为后面的数据分析做相应的准备的,预计在12月底,爬虫大概写到50篇案例的时刻,将会迎来一个新的内容,系统的数据分析博文,记得关注哦~
36kr 让一部分人先看到未来,而你今天要做的事情确实要抓取它的过去。
在这里插入图片描述2. 36氪(36kr)数据----数据分析
36kr的页面是一个瀑布流的效果,当你不断的下拉页面的时候,数据从后台追加过来,基于此,基本可以判断它是ajax异步的数据,只需要打开开发者工具,就能快速的定位到想要的数据,我们尝试一下!
在这里插入图片描述捕获链接如下
https://36kr.com/api/search-column/mainsite?per_page=20&page=1&_=1543840108547
https://36kr.com/api/search-column/mainsite?per_page=20&page=2&_=1543840108547
https://36kr.com/api/search-column/mainsite?per_page=20&page=3&_=1543840108547
https://36kr.com/api/search-column/mainsite?per_page=20&page=4&_=1543840108547
在多次尝试之后,发现per_page最大可以扩展到300,但是当大于100的数据,返回的数据并不是很理想,所以,我们拟定为100即可,page就是页码,这个不断循环叠加即可。
在这里插入图片描述上面的参数还有一个更加重要的值,叫做total_count
总共有多少文章数目。有这个参数,我们就能快速的拼接出来,想要的页码了。
3. 36氪(36kr)数据----创建scrapy项目
scrapy startproject kr36
4. 36氪(36kr)数据----创建爬虫入口页面
scrapy genspider Kr36 "www.gaokaopai.com"
5. 36氪(36kr)数据----编写url生成器
页面起始地址start_urls
为第一页数据,之后会调用parse
函数,在函数内容,我们去获取total_count
这个参数
这个地方,需要注意 yield
返回数据为Request()
关于他的详细说明,请参照
https://scrapy-chs.readthedocs.io/zh_CN/0.24/topics/request-response.html
所有参数清单,参数名字起得好,基本都能代表所有的意思了。比较重要的是url
和callback
class scrapy.http.Request(url[, callback, method='GET', headers, body, cookies, meta, encoding='utf-8', priority=0, dont_filter=False, errback])
class Kr36Spider(scrapy.Spider):
name = 'Kr36'
allowed_domains = ['36kr.com']
start_urls = ['https://36kr.com/api/search-column/mainsite?per_page=100&page=1&_=']
def parse(self, response):
data = json.loads(response.body_as_unicode())
totle = int(data["data"]["total_count"])
#totle = 201
for page in range(2,int(totle/100)+2):
print("正在爬取{}页".format(page),end="")
yield Request("https://36kr.com/api/search-column/mainsite?per_page=100&page={}&_=".format(str(page)), callback=self.parse_item)
6. 36氪(36kr)数据----解析数据
在解析数据过程中,发现有时候数据有缺失的情况发生,所以需要判断一下 app_views_count
, mobile_views_count
, views_count
, favourite_num
是否出现在字典中。
注意下面代码中的Kr36Item类,这个需要提前创建一下
Kr36Item
class Kr36Item(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
app_views_count = scrapy.Field() # APP观看数量
mobile_views_count = scrapy.Field() # 移动端观看数量
views_count = scrapy.Field() # PC观看数量
column_name = scrapy.Field() # 类别
favourite_num = scrapy.Field() # 收藏数量
title = scrapy.Field() # 标题
published_at = scrapy.Field() # 发布时间
is_free = scrapy.Field() # 是否免费
username = scrapy.Field()
def parse_item(self,response):
data = json.loads(response.body_as_unicode())
item = Kr36Item()
for one_item in data["data"]["items"]:
print(one_item)
item["app_views_count"] = one_item["app_views_count"] if "app_views_count" in one_item else 0# APP观看数量
item["mobile_views_count"] = one_item["mobile_views_count"] if "mobile_views_count" in one_item else 0 # 移动端观看数量
item["views_count"] = one_item["views_count"] if "views_count" in one_item else 0 # PC观看数量
item["column_name"] = one_item["column_name"] # 类别
item["favourite_num"] = one_item["favourite_num"] if "favourite_num" in one_item else 0 # 收藏数量
item["title"] = one_item["title"] # 标题
item["published_at"] = one_item["published_at"] # 发布时间
item["is_free"] = one_item["is_free"] if "is_free" in one_item else 0# 是否免费
item["username"] = json.loads(one_item["user_info"])["name"]
yield item
最后打开settings.py
中的pipelines
编写数据持久化代码
ITEM_PIPELINES = {
'kr36.pipelines.Kr36Pipeline': 300,
}
import os
import csv
class Kr36Pipeline(object):
def __init__(self):
store_file = os.path.dirname(__file__)+'/spiders/36kr.csv'
self.file = open(store_file,"a+",newline="",encoding="utf_8_sig")
self.writer = csv.writer(self.file)
def process_item(self, item, spider):
try:
self.writer.writerow((
item["title"],
item["app_views_count"],
item["mobile_views_count"],
item["views_count"],
item["column_name"],
item["favourite_num"],
item["published_at"],
item["is_free"],
item["username"]
))
print("数据存储完毕")
except Exception as e:
print(e.args)
def close_spider(self,spider):
self.file.close()
7. 36氪(36kr)数据----获取数据
运行上述代码,没有做过多的处理,也没有调整并发速度,也没有做反爬措施。跑了一下,大概获取到了69936
条数据,和预估的差了300多条,问题不大,原因没细查,哈哈哈哈,小编整理一套Python资料和PDF,有需要Python学习资料可以加学习群:1004391443,反正闲着也是闲着呢,不如学点东西啦~~
网友评论