美文网首页
AutoEncoder 自编码

AutoEncoder 自编码

作者: 地平线上的背影 | 来源:发表于2019-02-13 18:35 被阅读0次

    AutoEncoder是极为重要的一类神经网络,可用于优化搜索引擎,数据分类,语义识别等多种任务,本文开始学习这一神经网络

    1. 准备数据和超参数

    import torch
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    import numpy as np
    
    
    # torch.manual_seed(1)    # reproducible
    
    # Hyper Parameters
    EPOCH = 10
    BATCH_SIZE = 64
    LR = 0.005         # learning rate
    DOWNLOAD_MNIST = False
    N_TEST_IMG = 5
    
    # Mnist digits dataset
    train_data = torchvision.datasets.MNIST(
        root='./mnist/',
        train=True,                                     # this is training data
        transform=torchvision.transforms.ToTensor(),    
    # Converts a PIL.Image or numpy.ndarray to
    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=DOWNLOAD_MNIST,                        # download it if you don't have it
    )
    

    2. 预览和装载数据

    # plot one example
    print(train_data.train_data.size())     # (60000, 28, 28)
    print(train_data.train_labels.size())   # (60000)
    plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[2])
    plt.show()
    
    # DataLoader for easy mini-batch return in training the image batch shape will be (50, 1, 28, 28)
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    

    3. 构建自编码器

    class AutoEncoder(nn.Module):
        def __init__(self):
            super(AutoEncoder, self).__init__()
    
            self.encoder = nn.Sequential(
                nn.Linear(28*28, 128),
                nn.Tanh(),
                nn.Linear(128, 64),
                nn.Tanh(),
                nn.Linear(64, 12),
                nn.Tanh(),
                nn.Linear(12, 3),   # compress to 3 features which can be visualized in plt
            )
            self.decoder = nn.Sequential(
                nn.Linear(3, 12),
                nn.Tanh(),
                nn.Linear(12, 64),
                nn.Tanh(),
                nn.Linear(64, 128),
                nn.Tanh(),
                nn.Linear(128, 28*28),
                nn.Sigmoid(),       # compress to a range (0, 1)
            )
    
        def forward(self, x):
            encoded = self.encoder(x)
            decoded = self.decoder(encoded)
            return encoded, decoded
    
    
    autoencoder = AutoEncoder()
    

    注:

    1. AutoEncoder是通过多层全连接网络和激活函数将输入结果转变为低维变量,再通过反向过程将该变量转化为高维结果,而中间的低维变量即为编码结果
    2. 构建前向传播过程时,需要连接编码和解码过程

    4. 选择优化器和损失函数

    optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
    loss_func = nn.MSELoss()
    

    5. 初始化plt图像

    # initialize figure
    f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
    plt.ion()   # continuously plot
    
    # original data (first row) for viewing
    view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
    for i in range(N_TEST_IMG):
        a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())
    

    6. 训练和优化

    for epoch in range(EPOCH):
        for step, (x, b_label) in enumerate(train_loader):
            b_x = x.view(-1, 28*28)   # batch x, shape (batch, 28*28)
            b_y = x.view(-1, 28*28)   # batch y, shape (batch, 28*28)
    
            encoded, decoded = autoencoder(b_x)
    
            loss = loss_func(decoded, b_y)      # mean square error
            optimizer.zero_grad()               # clear gradients for this training step
            loss.backward()                     # backpropagation, compute gradients
            optimizer.step()                    # apply gradients
    
    

    7. 可视化训练过程与结果

            if step % 100 == 0:
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())
    
                # plotting decoded image (second row)
                _, decoded_data = autoencoder(view_data)
                for i in range(N_TEST_IMG):
                    a[1][i].clear()
                    a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
                    a[1][i].set_xticks(()); a[1][i].set_yticks(())
                plt.draw(); plt.pause(0.05)
    
    plt.ioff()
    plt.show()
    
    # visualize in 3D plot
    view_data = train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
    encoded_data, _ = autoencoder(view_data)
    fig = plt.figure(2); ax = Axes3D(fig)
    X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
    values = train_data.train_labels[:200].numpy()
    for x, y, z, s in zip(X, Y, Z, values):
        c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
    ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
    plt.show()
    

    相关文章

      网友评论

          本文标题:AutoEncoder 自编码

          本文链接:https://www.haomeiwen.com/subject/iebreqtx.html