美文网首页
KNN约会网站配对

KNN约会网站配对

作者: Yonginggg | 来源:发表于2019-08-03 10:39 被阅读0次

    示例:在约会网站上使用k-近邻算法

    (1) 收集数据:提供文本文件。
    (2) 准备数据:使用Python解析文本文件。
    (3) 分析数据:使用Matplotlib画二维扩散图。
    (4) 训练算法:此步骤不适用于k-近邻算法。
    (5) 测试算法:使用海伦提供的部分数据作为测试样本。

    测试样本和非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。
    (6) 使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

    完整的代码

    from numpy import *
    import operator
    #创建数据
    def createDataSet():
        group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
        labels = ['A','A','B','B']
        return group, labels
    #数据分析 KNN
    def classify0(inX, dataSet, labels, k):
        dataSetSize = dataSet.shape[0]
        #❶(以下三⾏) 距离计算
        diffMat = tile(inX, (dataSetSize,1)) - dataSet 
        sqDiffMat = diffMat**2
        sqDistances = sqDiffMat.sum(axis=1)
        distances = sqDistances**0.5
        sortedDistIndicies = distances.argsort()
        classCount={}
        #❷ (以下两⾏) 选择距离最⼩的k个点
        for i in range(k):
            voteIlabel = labels[sortedDistIndicies[i]]
            classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        sortedClassCount = sorted(classCount.items(),
            #❸ 排序
            key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    # 将⽂本记录转换为NumPy的解析程序
    def file2matrix(filename):
        fr = open(filename)
        arrayOlines=fr.readlines() #readlines() 方法用于读取所有行(直到结束符 EOF)并返回列表
        numberOfLines = len(arrayOlines) #❶ 得到⽂件⾏数
        returnMat = zeros((numberOfLines,3)) #❷ 创建返回的Numpy矩阵
        classLabelVector = []
        index = 0
        #❸ (以下三⾏) 解析⽂件数据到列表
        for line in arrayOlines:
            line = line.strip() #strip() 方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列
            listFromLine = line.split('\t') #split() 通过指定分隔符对字符串进行切片
            returnMat[index,:] = listFromLine[0:3] #将数据填充到矩阵,3个特征值
            classLabelVector.append(int(listFromLine[-1])) #添加listFromLine的最后一个元素到列表
            index += 1
        return returnMat,classLabelVector
    datingDataMat, datingLabels = file2matrix('D:/Python Project/.vscode/Machine-learning-practical-notes/KNN/datingTestSet2.txt')
    # print(datingDataMat)
    # [[  4.09200000e+04   8.32697600e+00   9.53952000e-01]
    #  [  1.44880000e+04   7.15346900e+00   1.67390400e+00]
    #  [  2.60520000e+04   1.44187100e+00   8.05124000e-01]
    #  ...,
    #  [  2.65750000e+04   1.06501020e+01   8.66627000e-01]
    #  [  4.81110000e+04   9.13452800e+00   7.28045000e-01]
    #  [  4.37570000e+04   7.88260100e+00   1.33244600e+00]]
    
    # print(datingLabels[0:20])
    # [3, 2, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3]
    
    #使用matplotlib
    import matplotlib
    import matplotlib.pyplot as plt
    fig = plt.figure()
    ax = fig.add_subplot(111)
    # ax.scatter(datingDataMat[:,1], datingDataMat[:,2]) #单色显示图(x,y轴的点)
    ax.scatter(datingDataMat[:,1], datingDataMat[:,2],15.0*array(datingLabels), 15.0*array(datingLabels))#双色显示图
    # plt.show()
    
    # 归⼀化特征值
    # newValue = (oldValue-min)/(max-min)
    def autoNorm(dataSet):
        minVals = dataSet.min(0) #每列的最⼩值,dataSet.min(0)中的参数0使得函数可以从列中选取最⼩值, ⽽不是选取当前⾏的最⼩值
        # print(minVals)
        # [ 0.        0.        0.001156]
        maxVals = dataSet.max(0) #每列的最大值
        # print(maxVals)
        # [  9.12730000e+04   2.09193490e+01   1.69551700e+00]
        ranges = maxVals - minVals
        # print(ranges)
        # [  9.12730000e+04   2.09193490e+01   1.69436100e+00]
        normDataSet = zeros(shape(dataSet)) #0矩阵
        m = dataSet.shape[0] #1000个数据
        # print(m)
        # 1000
        normDataSet = dataSet - tile(minVals, (m,1)) #oldValue-min
        normDataSet = normDataSet/tile(ranges, (m,1)) #❶ 特征值相除,ranges = max-min
        return normDataSet, ranges, minVals
    
    # normMat, ranges, minVals = autoNorm(datingDataMat)
    
    # print(normMat)
    # [[ 0.44832535  0.39805139  0.56233353]
    #  [ 0.15873259  0.34195467  0.98724416]
    #  [ 0.28542943  0.06892523  0.47449629]
    #  ...,
    #  [ 0.29115949  0.50910294  0.51079493]
    #  [ 0.52711097  0.43665451  0.4290048 ]
    #  [ 0.47940793  0.3768091   0.78571804]]
    
    # print(ranges)
    # [  9.12730000e+04   2.09193490e+01   1.69436100e+00]
    
    # print(minVals)
    # [ 0.        0.        0.001156]
    
    #分类器针对约会⽹站的测试代码
    def datingClassTest():
        # 数据集的占比
        hoRatio = 0.10
        #打开文件获取数据
        datingDataMat,datingLabels = file2matrix('D:/Python Project/.vscode/Machine-learning-practical-notes/KNN/datingTestSet2.txt') 
        #进行归一化操作
        normMat, ranges, minVals = autoNorm(datingDataMat) 
        #归一化后的矩阵大小 m=1000
        m = normMat.shape[0]
        # 测试集的数量 100
        numTestVecs = int(m*hoRatio)
        # 错误的数量
        errorCount = 0.0
        for i in range(numTestVecs):
            classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
            print ("the classifier came back with: %d, the real answer is: %d"% (classifierResult, datingLabels[i]))
            # 如果不匹配,errorCount++
            if (classifierResult != datingLabels[i]): errorCount += 1.0
        # 输出出错百分比
        print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
    # 运行分类器针对约会⽹站的测试代码
    # datingClassTest()
    
    # 约会网站预测函数
    def classifyPerson():
        resultList = ['not at all','in small doses','in large doses']
        # percentTats = float(input("percentage of time spent playing video games?"))
        # miles = float(input("frequent flier mies earned per year?"))
        # iceCream = float(input("liters of ice cream consumed per week?"))
        percentTats_str = input("percentage of time spent playing video games?")
        miles_str = input("frequent flier mies earned per year?")
        iceCream_str = input("liters of ice cream consumed per week?")
        percentTats = float(percentTats_str)
        miles = float(miles_str)
        iceCream = float(iceCream_str)
        datingDataMat,datingLabels = file2matrix('D:/Python Project/.vscode/Machine-learning-practical-notes/KNN/datingTestSet2.txt')
        normMat,ranges,minVals = autoNorm(datingDataMat)
        inArr = array([miles,percentTats,iceCream])
        classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
        print("\nyou will probably like this person:",resultList[classifierResult - 1])
    
    classifyPerson()
    

    散点图

    image

    预测结果

    image

    相关文章

      网友评论

          本文标题:KNN约会网站配对

          本文链接:https://www.haomeiwen.com/subject/ietjdctx.html