美文网首页
Spark kafka + streaming自适应topic

Spark kafka + streaming自适应topic

作者: 路飞_5611 | 来源:发表于2018-01-12 10:10 被阅读0次

    背景

    1. spark streaming + kafka 有两种方案接收kafka数据-基于receiver的方案和direct方案(no receiver方案)。
    • 基于receiver的方案,属于比较老的方案,其采用Kafka’s high-level API通过专门的Rceiver去接收kafka数据。
      采用 KafkaUtils.createStream

    • direct方案,是当前的主流用法,其采用Kafka’s simple consumer API,创建的RDD partitions数与kafka partitions数一致。性能比前者好。
      采用 KafkaUtils.createDirectStream

      具体的介绍可以查看官方介绍:Spark Streaming + Kafka Integration Guide

    1. 对于第二种方案,spark streaming启动后当kafka的topic partition数从A升到B时,新增的分区上的数据会丢失。
      spark streaming只从topic中读取原来的A个分区数据,新增的分区并不能被spark streaming感知到。
      更具体的原因是
    DirectKafkaInputDStream#compute生成的KafkaRDD, 其partitions数与spark streaming启动时topic的partitions数一致,topic的partitions和offset保存在currentOffsets map变量中,
    这个变量在启动时初始化,后续不会根据topic的partition变化进行更新。所以导致kafka新增的partitions数据
    会丢失。
    

    更详细的分析,可以参考下面的文章:
    Spark Streaming 自适应上游 kafka topic partition 数目变化

    因为spark streaming是24x7运行的,如何让spark streaming不重启的情况下,自适应topic partitions的变化?
    且能够符合如下要求:

    1. 不需要重新编译spark源码, 因为源代码不是我们维护的。
    2. 能够灵活的部署

    解决方案

    思路可以参考
    Spark Streaming 自适应上游 kafka topic partition 数目变化

    总的解决方案如下:

    1. MTDirectKafkaInputDStream继承DirectKafkaInputDStream,override compute方法,在每次生成KafkaRDD时,更新currentOffsets中的分区信息。
    2. 在org.apache.spark.streaming.kafka路径下,新建一个KafkaUtils.scala文件,里面的代码直接将spark源码中的KafkaUtils源码复制过来。 修改新建的KafkaUtils.scala,将createDirectStream中new DirectKafkaInputDStream,替换为 new MTDirectKafkaInputDStream.

    具体的实现步骤如下

    1. 新建maven工程 kafkastreamingadpter, 配置好scala相关的pom配置。

    2. 新建package org.apache.spark.streaming.kafka

      备注:这里需要说明,因为下面创建的MTDirectKafkaInputDStream需要继承DirectKafkaInputDStream,而DirectKafkaInputDStream是private[streaming]修饰的。这里的规避技巧就是,将需要继承DirectKafkaInputDStream的子类对应的package设置为和DirectKafkaInputDStream一致,即可规避private无法继承的问题。

    3. 新建MTDirectKafkaInputDStream继承DirectKafkaInputDStream

    override compute方法,在每次生成KafkaRDD时,更新currentOffsets中的分区信息。
    
    1. 在org.apache.spark.streaming.kafka路径下,新建一个KafkaUtils.scala文件,里面的代码直接复制spark源码中的KafkaUtils源码。修改新建的KafkaUtils.scala,将createDirectStream中new DirectKafkaInputDStream,替换为 new MTDirectKafkaInputDStream

      备注:streaming代码中是通过 KafkaUtils.createDirectStream来创建stream的。因此希望KafkaUtils.createDirectStream返回的是MTDirectKafkaInputDStream。所以要修改KafkaUtils代码,将createDirectStream中new DirectKafkaInputDStream,修改为 new MTDirectKafkaInputDStream。
      我们不希望修改spark源码,所以这里用来个小技巧,直接将KafkaUtils代码copy一份出来进行修改,需要保持KafkaUtils的package路径一致

      2,4中用到的小技巧参考了

      [2016中国云计算技术大会-腾讯林立伟-Spark-Streaming在腾讯广点通的应用.pdf]

      Spark Streaming 自适应上游 kafka topic partition 数目变化

    2. 新建spark streaming + kafka应用实例DirectKafkaWordCount1
      实例需要配置 spark、kafka streaming相关的依赖。

            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
                <version>2.2.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
                <version>2.2.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.11</artifactId>
                <version>2.2.0</version>
            </dependency>
            
    
    1. mvn clean package 打包 生成kafka-streaming-adpter-1.0.jar
      对应的配置文件如下
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>com.sensetime.iva</groupId>
        <artifactId>kafka-streaming-adpter</artifactId>
        <version>1.0</version>
        <packaging>jar</packaging>
        <properties>
            <scala.version>2.11.8</scala.version>
            <commons.codec.version>1.8</commons.codec.version>
            <grizzled.version>1.0.1</grizzled.version>
            <slf4j-log4j12.version>1.7.5</slf4j-log4j12.version>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
                <version>2.2.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
                <version>2.2.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.11</artifactId>
                <version>2.2.0</version>
            </dependency>
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
            </dependency>
            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>3.8.1</version>
                <scope>test</scope>
            </dependency>
            <dependency>
                <groupId>commons-codec</groupId>
                <artifactId>commons-codec</artifactId>
                <version>${commons.codec.version}</version>
            </dependency>
            <dependency>
                <groupId>org.clapper</groupId>
                <artifactId>grizzled-slf4j_2.10</artifactId>
                <version>${grizzled.version}</version>
            </dependency>
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
                <version>${slf4j-log4j12.version}</version>
            </dependency>
        </dependencies>
        <build>
            <sourceDirectory>src/main/scala</sourceDirectory>
            <testSourceDirectory>src/test/scala</testSourceDirectory>
            <plugins>
                <plugin>
                    <groupId>org.scala-tools</groupId>
                    <artifactId>maven-scala-plugin</artifactId>
                    <executions>
                        <execution>
                            <goals>
                                <goal>compile</goal>
                                <goal>testCompile</goal>
                            </goals>
                        </execution>
                    </executions>
                    <configuration>
                        <scalaVersion>${scala.version}</scalaVersion>
                    </configuration>
                </plugin>
            </plugins>
        </build>
    </project>
    
    1. 上传jar包到spark on k8s的根路径下的jars,进行镜像打包
    node 73节点
    cd /home/huangchuibi/k8s/spark-2.2.0-k8s-0.5.0-bin-2.7.3
    ./sbin/build-push-docker-images.sh -r register.sensetime.sz.test-portus.com/spark-on-k8s -t 0.1 build
    ./sbin/build-push-docker-images.sh -r register.sensetime.sz.test-portus.com/spark-on-k8s -t 0.1 push
    
    
    1. 在k8s各个节点上pull 镜像,因为spark on k8s,配置镜像拉取策略为本地有就不再拉取。所以需要手动进行拉取。
    docker pull register.sensetime.sz.test-portus.com/spark-on-k8s/spark-driver:0.1
    docker pull register.sensetime.sz.test-portus.com/spark-on-k8s/spark-executor:0.1
    
    1. 创建topic
    ssh node91
    kubectl -n snappydata exec -it kafka-0 /bin/bash
    cd /opt/kafka_2.11-0.10.2.0
    bin/kafka-topics.sh --create --zookeeper zookeeper-0.zookeeper.snappydata.svc.cluster.local:2181,zookeeper-1.zookeeper.snappydata.svc.cluster.local:2181,zookeeper-2.zookeeper.snappydata.svc.cluster.local:2181/kafka --replication-factor 1 --partitions 1 --topic test8
    
    
    1. 运行streaming 应用
    bin/spark-submit \
      --deploy-mode cluster \
      --class org.apache.spark.examples.streaming.DirectKafkaWordCount1 \
      --master k8s://http://172.20.2.91:8001 \
      --kubernetes-namespace snappydata \
      --conf spark.executor.instances=3 \
      --conf spark.app.name=spark-streaming \
      --conf spark.kubernetes.driver.docker.image=register.sensetime.sz.test-portus.com/spark-on-k8s/spark-driver:0.1 \
      --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
      --conf spark.kubernetes.executor.docker.image=register.sensetime.sz.test-portus.com/spark-on-k8s/spark-executor:0.1 \
      --conf spark.kubernetes.initcontainer.docker.image=register.sensetime.sz.test-portus.com/spark-on-k8s/spark-init:0.1 \
      --conf "spark.driver.extraJavaOptions=-Xss10m" \
      --conf "spark.executor.extraJavaOptions=-Xss10m" \
      --conf "spark.driver.extraClassPath=/opt/spark/examples/jars/kafka-streaming-adpter-1.0.jar" \
      --conf "spark.executor.extraClassPath=/opt/spark/examples/jars/kafka-streaming-adpter-1.0.jar" \
      --conf "spark.executor.userClassPathFirst=true" \
      --conf "spark.driver.userClassPathFirst=true" \
      local:///opt/spark/examples/jars/kafka-streaming-adpter-1.0.jar kafka-0.kafka.snappydata.svc.cluster.local:9092,kafka-1.kafka.snappydata.svc.cluster.local:9092,kafka-2.kafka.snappydata.svc.cluster.local:9092 test8
    
    

    备注 这里增加的四个conf配置,是为了让kafka-streaming-adpter-1.0.jar里的KafkaUtils优先级高于spark源码中的KafkaUtils。但是实际测试发现,应用还是以同一个jar包中的KafkaUtils为优先级最高。所以下面的四个配置也可以去掉。

    --conf "spark.driver.extraClassPath=/opt/spark/examples/jars/kafka-streaming-adpter-1.0.jar" \
    --conf "spark.executor.extraClassPath=/opt/spark/examples/jars/kafka-streaming-adpter-1.0.jar" \
    --conf "spark.executor.userClassPathFirst=true" \
    --conf "spark.driver.userClassPathFirst=true" \
    
    1. 动态增加分区
    kafka-topics.sh --zookeeper zookeeper-0.zookeeper.snappydata.svc.cluster.local:2181,zookeeper-1.zookeeper.snappydata.svc.cluster.local:2181,zookeeper-2.zookeeper.snappydata.svc.cluster.local:2181/kafka -alter -partitions 2 --topic test8
    

    相关文章

      网友评论

          本文标题:Spark kafka + streaming自适应topic

          本文链接:https://www.haomeiwen.com/subject/ifwxoxtx.html