美文网首页
验证码识别代码

验证码识别代码

作者: 醉乡梦浮生 | 来源:发表于2018-08-10 20:04 被阅读0次

    train=0 训练
    train = 1 测试

    import numpy as np
    import tensorflow as tf
    from captcha.image import ImageCaptcha
    import numpy as np
    import matplotlib.pyplot as plt
    from PIL import Image
    import random
    
    number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
    
    
    # alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
    # ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
    
    # def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):
    def random_captcha_text(char_set=number, captcha_size=4):
        captcha_text = []
        for i in range(captcha_size):
            c = random.choice(char_set)
            captcha_text.append(c)
        return captcha_text
    
    
    def gen_captcha_text_and_image():
        image = ImageCaptcha()
    
        captcha_text = random_captcha_text()
        captcha_text = ''.join(captcha_text)
    
        captcha = image.generate(captcha_text)
        # image.write(captcha_text, captcha_text + '.jpg')
    
        captcha_image = Image.open(captcha)
        captcha_image = np.array(captcha_image)
        return captcha_text, captcha_image
    
    
    def convert2gray(img):
        if len(img.shape) > 2:
            gray = np.mean(img, -1)
            # 上面的转法较快,正规转法如下
            # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
            # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
            return gray
        else:
            return img
    
    
    def text2vec(text):
        text_len = len(text)
        if text_len > MAX_CAPTCHA:
            raise ValueError('验证码最长4个字符')
    
        vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
        """
        def char2pos(c):
            if c =='_':
                k = 62
                return k
            k = ord(c)-48
            if k > 9:
                k = ord(c) - 55
                if k > 35:
                    k = ord(c) - 61
                    if k > 61:
                        raise ValueError('No Map')
            return k
        """
        for i, c in enumerate(text):
            idx = i * CHAR_SET_LEN + int(c)
            vector[idx] = 1
        return vector
    
    
    # 向量转回文本
    def vec2text(vec):
        """
        char_pos = vec.nonzero()[0]
        text=[]
        for i, c in enumerate(char_pos):
            char_at_pos = i #c/63
            char_idx = c % CHAR_SET_LEN
            if char_idx < 10:
                char_code = char_idx + ord('0')
            elif char_idx <36:
                char_code = char_idx - 10 + ord('A')
            elif char_idx < 62:
                char_code = char_idx-  36 + ord('a')
            elif char_idx == 62:
                char_code = ord('_')
            else:
                raise ValueError('error')
            text.append(chr(char_code))
        """
        text = []
        char_pos = vec.nonzero()[0]
        for i, c in enumerate(char_pos):
            number = i % 10
            text.append(str(number))
    
        return "".join(text)
    
    
    """ 
    #向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有 
    vec = text2vec("F5Sd") 
    text = vec2text(vec) 
    print(text)  # F5Sd 
    vec = text2vec("SFd5") 
    text = vec2text(vec) 
    print(text)  # SFd5 
    """
    
    
    # 生成一个训练batch
    def get_next_batch(batch_size=128):
        batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
        batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])
    
        # 有时生成图像大小不是(60, 160, 3)
        def wrap_gen_captcha_text_and_image():
            while True:
                text, image = gen_captcha_text_and_image()
                if image.shape == (60, 160, 3):
                    return text, image
    
        for i in range(batch_size):
            text, image = wrap_gen_captcha_text_and_image()
            image = convert2gray(image)
    
            batch_x[i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
            batch_y[i, :] = text2vec(text)
    
        return batch_x, batch_y
    
    
    # 定义CNN
    def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
        x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
    
        # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
        # w_c2_alpha = np.sqrt(2.0/(3*3*32))
        # w_c3_alpha = np.sqrt(2.0/(3*3*64))
        # w_d1_alpha = np.sqrt(2.0/(8*32*64))
        # out_alpha = np.sqrt(2.0/1024)
    
        # 3 conv layer
        w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
        b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
        conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
        conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv1 = tf.nn.dropout(conv1, keep_prob)
    
        w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
        b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
        conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv2 = tf.nn.dropout(conv2, keep_prob)
    
        w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
        b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
        conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv3 = tf.nn.dropout(conv3, keep_prob)
    
        # Fully connected layer
        w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
        b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
        dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
        dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
        dense = tf.nn.dropout(dense, keep_prob)
    
        w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
        b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
        out = tf.add(tf.matmul(dense, w_out), b_out)
        return out
    
    
    # 训练
    def train_crack_captcha_cnn():
        output = crack_captcha_cnn()
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
        optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
        predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
        max_idx_p = tf.argmax(predict, 2)
        max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        correct_pred = tf.equal(max_idx_p, max_idx_l)
        accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
    
            step = 0
            while True:
                batch_x, batch_y = get_next_batch(64)
                _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
                print(step, loss_)
    
                # 每100 step计算一次准确率
                if step % 10 == 0:
                    batch_x_test, batch_y_test = get_next_batch(100)
                    acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
                    print(step, acc)
                    # 如果准确率大于50%,保存模型,完成训练
                    if acc > 0.50:
                        saver.save(sess, "./model/crack_capcha.model", global_step=step)
                        break
    
                step += 1
    
    
    def crack_captcha(captcha_image):
        output = crack_captcha_cnn()
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            saver.restore(sess, "./model/crack_capcha.model-810")
    
            predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
            text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
            text = text_list[0].tolist()
            return text
    
    
    if __name__ == '__main__':
        train = 0
        if train == 0:
            number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
            # alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
            # ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
    
            text, image = gen_captcha_text_and_image()
            print("验证码图像channel:", image.shape)  # (60, 160, 3)
            # 图像大小
            IMAGE_HEIGHT = 60
            IMAGE_WIDTH = 160
            MAX_CAPTCHA = len(text)
            print("验证码文本最长字符数", MAX_CAPTCHA)
            # 文本转向量
            # char_set = number + alphabet + ALPHABET + ['_']  # 如果验证码长度小于4, '_'用来补齐
            char_set = number
            CHAR_SET_LEN = len(char_set)
    
            X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
            Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
            keep_prob = tf.placeholder(tf.float32)  # dropout
    
            train_crack_captcha_cnn()
        if train == 1:
            number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
            IMAGE_HEIGHT = 60
            IMAGE_WIDTH = 160
            char_set = number
            CHAR_SET_LEN = len(char_set)
    
            text, image = gen_captcha_text_and_image()
    
            f = plt.figure()
            ax = f.add_subplot(111)
            ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
            plt.imshow(image)
    
            plt.show()
    
            MAX_CAPTCHA = len(text)
            image = convert2gray(image)
            image = image.flatten() / 255
    
            X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
            Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
            keep_prob = tf.placeholder(tf.float32)  # dropout
    
            predict_text = crack_captcha(image)
            print("正确: {}  预测: {}".format(text, predict_text))
    
    

    相关文章

      网友评论

          本文标题:验证码识别代码

          本文链接:https://www.haomeiwen.com/subject/igblbftx.html