美文网首页
Multi-Level Context Ultra-Aggreg

Multi-Level Context Ultra-Aggreg

作者: 挺老实 | 来源:发表于2019-07-25 21:18 被阅读0次

    1 文章说明

    方向:立体匹配

    会议:CVPR2019

    2 动机

    However, existing methods only use features from plain convolution layers or a simple aggregation of multi-level features to calculate cost volume, which is insufficient because stereo matching requires discriminative features to identify corresponding pixels in rectified stereo image pairs. In this paper, we propose a unary features descriptor using multi-level context ultra-aggregation (MCUA), which encapsulates all convolutional features into a more discriminative representation by intra- and inter-level features combination.

    提出了一个更好的结构来提取更好的特征

    3 核心

    Multi-level Context Ultra-Aggregation (MCUA) scheme which combines the features at the shallowest, smallest scale and deeper, larger scales using just “shallow” skip connections.

    提出的框架:

    提出的核心模块:

    1 通过上面的分支提取全局特征

    2 通过下面的分支提取局部特征

    3 通过短连接来融合不同尺度的局部和全局特征

    4 数据库

    The Scene Flow datasets : 训练 35454

                                                    测试:4370

                                                       像素:1242

     KITTI2015/2012 :   训练  200/194

                                           测试:200/195

                                                       像素:1242/375

    5训练

    优化器:Adam (Adaptive Moment Estimation)

    batch: 8

    maximum disparity (D):192 pixels

    Scene Flow datasets:  70 epochs, 256 × 512 resolution

    KITTI2015/2012 : 

    6 实验

    相关文章

      网友评论

          本文标题:Multi-Level Context Ultra-Aggreg

          本文链接:https://www.haomeiwen.com/subject/ijikrctx.html