美文网首页
自己造轮子-ID3

自己造轮子-ID3

作者: Alistair | 来源:发表于2017-05-17 15:35 被阅读0次

    自己造轮子是理解算法的好办法,今天写了一个ID3的,对决策树理解更加深刻了

    from math import log
    import operator
    
    #计算信息熵,Ent(D)
    def calcShannonEnt(dataSet):
        numEntries = len(dataSet)
        labelCounts = {}
        for featVec in dataSet:
            currentLabel = featVec[-1]
            if currentLabel not in labelCounts.keys():
                labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
            shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key]) / numEntries
            shannonEnt -= prob * log(prob, 2)
        return shannonEnt
    
    
    #按照给定特征划分数据集,axis是特征,value是特征的值,返回的是DV
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]
                reducedFeatVec.extend(featVec[axis+1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet
    
    #计算信息增益
    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1      
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0  #初始化增益和最佳特征
        bestFeature = -1
        for i in range(numFeatures):       
            featList = [example[i] for example in dataSet] #获得属性的各种取值
            uniqueVals = set(featList)       
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet)/float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)     
            infoGain = baseEntropy - newEntropy     
            if (infoGain > bestInfoGain):       
                bestInfoGain = infoGain         
                bestFeature = i
        return bestFeature     
    
    #终止条件,属性用光的情况下,不同标签选择数量最多的当做叶节点标签
    def majorityCht(classList):
        classCount = {}
        for vote in classList:
            if vote not in classList.keys():
                classCount[vote] = 0
            classCount[vote] += 1
        sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), \
                                  reverse = True)
        return sortedClassCount[0][0]
    
    #生成树,labels是所有特征组成的列表
    def createTree(dataSet, labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) == len(classList):  #终止条件一:如果标签都一样没必要划分
            return classList[0]
        if len(dataSet[0]) == 1: #终止条件二:如果没有属性了,无法划分,返回最多的标签
            return majorityCht(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:  #树的递归调用
            subLabels = labels[:]
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value)\
                  ,subLabels)
        return myTree
    
    
    #测试部分:使用决策树的分类函数
    def classify(inputTree, featLabels, testVec):
        firstStr = inputTree.keys()[0]
        secondDict = inputTree[firstStr]
        featIndex = featLabels.index(firstStr)
        for key in secondDict.keys():
            if testVec[featIndex] == key:
                if type(secondDict[key]).__name__ == 'dict':
                    classLabel = classify(secondDict[key], featLabels, testVec)
                else: classLabel = secondDict[key]
        return classLabel
    

    相关文章

      网友评论

          本文标题:自己造轮子-ID3

          本文链接:https://www.haomeiwen.com/subject/ikmdxxtx.html