美文网首页
iOS-OC对象原理_cache_t

iOS-OC对象原理_cache_t

作者: 泽泽伐木类 | 来源:发表于2020-09-18 15:48 被阅读0次

    前言

    本篇文章开始深度探索objc_class结构下的cache_t cache成员,cache_t结构在整个objc底层还是非常重要的,简单的结构分布如下:

    拓补图.003.jpeg

    开始

    创建一个简单的ZZPerson类,同时定义2个实例方法

    @interface ZZPerson : NSObject
    - (void)toDoSomething0;
    - (void)toDoSayHello;
    @end
    

    main.m中添加代码片段:

    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            // insert code here...
            ZZPerson *person = [ZZPerson alloc];
            Class pClass = [person class];
            [person toDoSomething0];
            [person toDoSayHello];
            NSLog(@"hello world");
        }
        return 0;
    }
    

    通过LLDB调试输出结构体信息:

    (lldb) p/x ZZPerson.class
    (Class) $0 = 0x0000000100002230 ZZPerson
    (lldb) p (cache_t *)0x0000000100002240
    (cache_t *) $1 = 0x0000000100002240
    (lldb) p *$1
    (cache_t) $2 = {
      _buckets = {
        std::__1::atomic<bucket_t *> = 0x0000000100719980 {
          _sel = {
            std::__1::atomic<objc_selector *> = ""
          }
          _imp = {
            std::__1::atomic<unsigned long> = 11504
          }
        }
      }
      _mask = {
        std::__1::atomic<unsigned int> = 3
      }
      _flags = 32784
      _occupied = 2
    }
    (lldb) p $2.buckets()
    (bucket_t *) $3 = 0x0000000100719980
    (lldb) p *$3
    (bucket_t) $4 = {
      _sel = {
        std::__1::atomic<objc_selector *> = ""
      }
      _imp = {
        std::__1::atomic<unsigned long> = 11504
      }
    }
    (lldb) p $4.sel()
    (SEL) $5 = "toDoSomething0"
    (lldb) p $4.imp(pClass)
    (IMP) $6 = 0x0000000100000ec0 (KCObjc`-[ZZPerson toDoSomething0])
    (lldb) p $3 + 1
    (bucket_t *) $7 = 0x0000000100719990
    (lldb) p *$7
    (bucket_t) $8 = {
      _sel = {
        std::__1::atomic<objc_selector *> = ""
      }
      _imp = {
        std::__1::atomic<unsigned long> = 11472
      }
    }
    (lldb) p $8.sel()
    (SEL) $9 = "toDoSayHello"
    (lldb) p $8.imp(pClass)
    (IMP) $10 = 0x0000000100000ee0 (KCObjc`-[ZZPerson toDoSayHello])
    (lldb) 
    

    针对 _mask_occupied 探索,从cache_t::insert()开始:

    ALWAYS_INLINE
    void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
    {
    #if CONFIG_USE_CACHE_LOCK
        cacheUpdateLock.assertLocked();
    #else
        runtimeLock.assertLocked();
    #endif
    
        ASSERT(sel != 0 && cls->isInitialized());
       //1.=========内存分配部分===========
        // Use the cache as-is if it is less than 3/4 full
        mask_t newOccupied = occupied() + 1;
        unsigned oldCapacity = capacity(), capacity = oldCapacity;
        if (slowpath(isConstantEmptyCache())) {
            // Cache is read-only. Replace it.
            if (!capacity) capacity = INIT_CACHE_SIZE;
            reallocate(oldCapacity, capacity, /* freeOld */false);
        }
        else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
            // Cache is less than 3/4 full. Use it as-is.
        }
        else {
            capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;  //扩容
            if (capacity > MAX_CACHE_SIZE) {
                capacity = MAX_CACHE_SIZE;
            }
            reallocate(oldCapacity, capacity, true); //重新梳理 扩容
        }
        //2.========插值部分===========
        bucket_t *b = buckets();
        mask_t m = capacity - 1;
        mask_t begin = cache_hash(sel, m);
        mask_t i = begin;
    
        // Scan for the first unused slot and insert there.
        // There is guaranteed to be an empty slot because the
        // minimum size is 4 and we resized at 3/4 full.
        do {
            if (fastpath(b[i].sel() == 0)) {
                incrementOccupied();
                b[i].set<Atomic, Encoded>(sel, imp, cls);
                return;
            }
            if (b[i].sel() == sel) {
                // The entry was added to the cache by some other thread
                // before we grabbed the cacheUpdateLock.
                return;
            }
        } while (fastpath((i = cache_next(i, m)) != begin));
    
        cache_t::bad_cache(receiver, (SEL)sel, cls);
    }
    

    上面的源码我们大致可以分为 内存分配插值处理 2个部分来探索分析:

    • 内存分配部分:这里的开始部分就有一个非常重要的注释信息:Use the cache as-is if it is less than 3/4 full,大致的示意图:
      拓补图.001.jpeg

    这里有几个枚举值INIT_CACHE_SIZE,MAX_CACHE_SIZE,CACHE_END_MARKER注意下:

    #define CACHE_END_MARKER 1
    enum {
        INIT_CACHE_SIZE_LOG2 = 2,
        INIT_CACHE_SIZE      = (1 << INIT_CACHE_SIZE_LOG2),
        MAX_CACHE_SIZE_LOG2  = 16,
        MAX_CACHE_SIZE       = (1 << MAX_CACHE_SIZE_LOG2),
    };
    

    在流程图中我们看到reallocate()方法,直译过来就是重新分配的意思,我们继续看下它的内部实现:

    ALWAYS_INLINE
    void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
    {
        bucket_t *oldBuckets = buckets();
        bucket_t *newBuckets = allocateBuckets(newCapacity);
    
        // Cache's old contents are not propagated. 
        // This is thought to save cache memory at the cost of extra cache fills.
        // fixme re-measure this
    
        ASSERT(newCapacity > 0);
        ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
    
        setBucketsAndMask(newBuckets, newCapacity - 1);
        
        if (freeOld) {
            cache_collect_free(oldBuckets, oldCapacity);
        }
    }
    #if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
    
    void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
    {
        // objc_msgSend uses mask and buckets with no locks.
        // It is safe for objc_msgSend to see new buckets but old mask.
        // (It will get a cache miss but not overrun the buckets' bounds).
        // It is unsafe for objc_msgSend to see old buckets and new mask.
        // Therefore we write new buckets, wait a lot, then write new mask.
        // objc_msgSend reads mask first, then buckets.
    
    #ifdef __arm__
        // ensure other threads see buckets contents before buckets pointer
        mega_barrier();
    
        _buckets.store(newBuckets, memory_order::memory_order_relaxed);
        
        // ensure other threads see new buckets before new mask
        mega_barrier();
        
        _mask.store(newMask, memory_order::memory_order_relaxed);
        _occupied = 0;
    #elif __x86_64__ || i386
        // ensure other threads see buckets contents before buckets pointer
        _buckets.store(newBuckets, memory_order::memory_order_release);
        
        // ensure other threads see new buckets before new mask
        _mask.store(newMask, memory_order::memory_order_release);
        _occupied = 0;
    #else
    #error Don't know how to do setBucketsAndMask on this architecture.
    #endif
    }
    

    大致流程:
    1.通过buckets(),获取当前oldBuckets;
    2.通过allocateBuckets(newCapacity),创建新的newBuckets;
    3.通过setBucketsAndMask设置新的newBucketsnewMask,这里我们可以看到newMask = newCapacity - 1,即_mask_capacity的关系。该方法内部将_occupied = 0
    4.当非首次开辟时,freeOld = true,此时会触发cache_collect_free()方法,将oldBuckets数据抹除掉。
    到此,完成了一次重新分配。这意味着当需要扩容重新分配空间时,会将旧数据清空。

    • 插值处理部分
      这里有几个比较重要的方法:
    1. cache_hash(sel,m)
    static inline mask_t cache_hash(SEL sel, mask_t mask) 
    {
        return (mask_t)(uintptr_t)sel & mask;
    }
    

    该方法是通过hash运算来获取插值的起始位置begin,这也意味着插值的起始位置是不确定的

    1. cache_next(i,m):
    static inline mask_t cache_next(mask_t i, mask_t mask) {
    //    printf("\ni:%d mask:%d cache_next : %d",i,mask,(i+1) & mask);
        return (i+1) & mask;
    }
    /*
    i:1 mask:3 cache_next : 2
    i:1 mask:3 cache_next : 2
    i:0 mask:3 cache_next : 1
    i:3 mask:3 cache_next : 0
    i:3 mask:3 cache_next : 0
    i:7 mask:7 cache_next : 0
    i:0 mask:7 cache_next : 1
    */
    

    这个方式是在do while循环中获取下个索引的方法。

    1. incrementOccupied():
    void cache_t::incrementOccupied() 
    {
        _occupied++;
    }
    

    当执行一次插值时,_occupied++一次;

    接下来将整个cache_t结构抽离出一个简单的版本:

    struct zz_bucket_t {
        SEL _sel;
        IMP _imp;
    };
    struct zz_cache_t {
        struct bucket_t * _buckets;
        uint32_t _mask;
    };
    struct zz_class_data_bits_t {
        uintptr_t bits;
    };
    struct zz_objc_class {
        Class ISA;
        Class superclass;
        struct zz_cache_t cache;
        struct zz_class_data_bits_t bits;
    };
    

    我们在main.m中通过多次调用实例方法,然后看下cache_t的打印情况:

    void printCache_tLayout(Class pClass){
        struct zz_objc_class *myClass = (__bridge struct zz_objc_class *)pClass;
        printf("\n========>start<==========");
        printf("\n_occupied:%hu,_mask:%u,capacity:%u ",myClass->cache._occupied,myClass->cache._mask,myClass->cache._mask+1);
    //    NSLog(@"_occupied : %hu,_mask:%u",myClass->cache._occupied,myClass->cache._mask);
        for(mask_t i = 0;i< myClass->cache._mask;i++){
            struct zz_bucket_t bucket = myClass->cache._buckets[i];
            printf("\n%s - %p",(char *)(bucket._sel),bucket._imp);
    //        NSLog(@"%@ - %p",NSStringFromSelector(bucket._sel),bucket._imp);
        }
        printf("\n=========>end<==========");
    }
    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            ZZPerson *person = [ZZPerson alloc];
            Class pClass = [person class];
            [person toDoSayHello0];
            printCache_tLayout(pClass);
            [person toDoSayHello1];
            printCache_tLayout(pClass);
            [person toDoSayHello2];
            printCache_tLayout(pClass);
            [person toDoSayHello3];
            printCache_tLayout(pClass);
            [person toDoSayHello4];
            printCache_tLayout(pClass);
            [person toDoHaHaHa];
            printCache_tLayout(pClass);
            [person toDoSomething0];
            printCache_tLayout(pClass);
            [person toDoSayHello0];
            printCache_tLayout(pClass);
        }
        return 0;
    }
    

    日志输出:

    ========>start<==========
    _occupied:1,_mask:3,capacity:4 
    toDoSayHello0 - 0x2e08
    (null) - 0x0
    (null) - 0x0
    =========>end<==========
    ========>start<==========
    _occupied:2,_mask:3,capacity:4 
    toDoSayHello0 - 0x2e08
    (null) - 0x0
    toDoSayHello1 - 0x2e18
    =========>end<==========
    ========>start<==========
    _occupied:1,_mask:7,capacity:8 
    toDoSayHello2 - 0x2e28
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    =========>end<==========
    ========>start<==========
    _occupied:2,_mask:7,capacity:8 
    toDoSayHello2 - 0x2e28
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    toDoSayHello3 - 0x2e38
    =========>end<==========
    ========>start<==========
    _occupied:3,_mask:7,capacity:8 
    toDoSayHello2 - 0x2e28
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    toDoSayHello4 - 0x2ec8
    (null) - 0x0
    toDoSayHello3 - 0x2e38
    =========>end<==========
    ========>start<==========
    _occupied:4,_mask:7,capacity:8 
    toDoSayHello2 - 0x2e28
    (null) - 0x0
    toDoHaHaHa - 0x2e78
    (null) - 0x0
    toDoSayHello4 - 0x2ec8
    (null) - 0x0
    toDoSayHello3 - 0x2e38
    =========>end<==========
    ========>start<==========
    _occupied:5,_mask:7,capacity:8 
    toDoSayHello2 - 0x2e28
    (null) - 0x0
    toDoHaHaHa - 0x2e78
    (null) - 0x0
    toDoSayHello4 - 0x2ec8
    toDoSomething0 - 0x2e68
    toDoSayHello3 - 0x2e38
    =========>end<==========
    ========>start<==========
    _occupied:1,_mask:15,capacity:16 
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    toDoSayHello0 - 0x2e08
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    (null) - 0x0
    =========>end<==========
    

    现在我们再看日志,就会非常的清晰,从start=>end为每次调用方法后cache_t的变化情况:
    第1次:首次分配内存,默认capacity(容量)为4,maskcapacity - 1=3,执行一次插值后_occupied++ = 1;
    第2次:进入newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)判断,这里对应的就是2+1<=4/4*3,这里条件满足,所以直接插值,_occupied++ = 2;
    第3次:进入newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)判断,这里对应3+1<= 4/4 *3,条件不满足,开始扩容,capacity = 4 * 2 = 8,内存重分配,创建全新的buckets,并抹除oldBucketsmask = newCapacity - 1 = 7, _occupied = 0重置;执行插值,_occupied++ = 1
    ....
    ....
    ....
    第n次
    以此类推...
    从日志中同样可以看到每次插入的SEL位置都是不定的,这是由于cache_hash()决定的。

    总结

    capacity:开辟容量大小,当occupied + 1 + CACHE_END_MARKER 超过capacity的3/4时,开始扩容(capacity * 2),该容量有最大值;
    mask: capacity - 1 得到,存在的意义为了防止越界;
    occupied: 当开始插值时,occupied++,当重新分配内存后,occupied = 0
    cache_hash()的巧妙使用;

    问题

    void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)是什么时候调用的呐?
    未完待续....

    参考:objc_781源码

    相关文章

      网友评论

          本文标题:iOS-OC对象原理_cache_t

          本文链接:https://www.haomeiwen.com/subject/ilplyktx.html