光流可视化

作者: ThompsonHen | 来源:发表于2020-07-20 01:03 被阅读0次

转载于:
https://blog.csdn.net/qq_34535410/article/details/89976801

def make_color_wheel():
    """
    Generate color wheel according Middlebury color code
    :return: Color wheel
    """
    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR

    colorwheel = np.zeros([ncols, 3])

    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
    col += RY

    # YG
    colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
    colorwheel[col:col+YG, 1] = 255
    col += YG

    # GC
    colorwheel[col:col+GC, 1] = 255
    colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
    col += GC

    # CB
    colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
    colorwheel[col:col+CB, 2] = 255
    col += CB

    # BM
    colorwheel[col:col+BM, 2] = 255
    colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
    col += + BM

    # MR
    colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
    colorwheel[col:col+MR, 0] = 255

    return colorwheel

def compute_color(u, v):
    """
    compute optical flow color map
    :param u: optical flow horizontal map
    :param v: optical flow vertical map
    :return: optical flow in color code
    """
    [h, w] = u.shape
    img = np.zeros([h, w, 3])
    nanIdx = np.isnan(u) | np.isnan(v)
    u[nanIdx] = 0
    v[nanIdx] = 0

    colorwheel = make_color_wheel()
    ncols = np.size(colorwheel, 0)

    rad = np.sqrt(u**2+v**2)

    a = np.arctan2(-v, -u) / np.pi

    fk = (a+1) / 2 * (ncols - 1) + 1

    k0 = np.floor(fk).astype(int)

    k1 = k0 + 1
    k1[k1 == ncols+1] = 1
    f = fk - k0

    for i in range(0, np.size(colorwheel,1)):
        tmp = colorwheel[:, i]
        col0 = tmp[k0-1] / 255
        col1 = tmp[k1-1] / 255
        col = (1-f) * col0 + f * col1

        idx = rad <= 1
        col[idx] = 1-rad[idx]*(1-col[idx])
        notidx = np.logical_not(idx)

        col[notidx] *= 0.75
        img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))

    return img

def flow_to_image(flow):
    """
    Convert flow into middlebury color code image
    :param flow: optical flow map
    :return: optical flow image in middlebury color
    """
    u = flow[:, :, 0]
    v = flow[:, :, 1]

    maxu = -999.
    maxv = -999.
    minu = 999.
    minv = 999.
    UNKNOWN_FLOW_THRESH = 1e7
    SMALLFLOW = 0.0
    LARGEFLOW = 1e8

    idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
    u[idxUnknow] = 0
    v[idxUnknow] = 0

    maxu = max(maxu, np.max(u))
    minu = min(minu, np.min(u))

    maxv = max(maxv, np.max(v))
    minv = min(minv, np.min(v))

    rad = np.sqrt(u ** 2 + v ** 2)
    maxrad = max(-1, np.max(rad))

    u = u/(maxrad + np.finfo(float).eps)
    v = v/(maxrad + np.finfo(float).eps)

    img = compute_color(u, v)

    idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
    img[idx] = 0

    return np.uint8(img)
img = flow_to_image(flow)
plt.imshow(img)
plt.show()

相关文章

  • 光流可视化

    转载于:https://blog.csdn.net/qq_34535410/article/details/899...

  • 光流

    https://blog.csdn.net/qq_41368247/article/details/82562165

  • BLAST结果可视化

    老板就是上帝 上帝说要有光,于是就有了光 导师说要有可视化结果,于是我努力把结果可视化~ 前情提示 为了知道测序r...

  • tensorboard

    1.tensorboard可视化数据流图: Mnist softmax模型数据流图 展开softmax_layer:

  • 菜鸟实习日记~day9(CF+LK)

    科研: 一、光流算法 @灰度恒常约束 光流是图像亮度的运动信息描述。光流法计算最初是由Horn和Schunck于1...

  • openCV_Optialflow

    光流探测

  • openCV:光流

    概念 定义 光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,是由对象或相机的移动引起的两个连续帧之间的...

  • 流 光 记

    一 不会写诗 却喜欢冷抒情桌上的纸笔安静躺着咖啡热气营造出的云雾仙境里时间 一直往回走 流失的时光里似乎多了...

  • 可视化思维的应用

    今天阅读的是《深度思维》第三章可视化思维,以可视化思维高效,对抗庞杂的信息流。可视化思维的核心在于其原理而不是形态...

  • 光流估计网络---FlowNet2.0

    光流估计网络---FlowNet1.0 光流估计网络---FlowNet2.0 论文地址:FlowNet 2.0:...

网友评论

    本文标题:光流可视化

    本文链接:https://www.haomeiwen.com/subject/ilwdkktx.html