最近搭好了 Hadoop 的环境,赶快整一个小程序试验一下(过两天再写怎么搭的环境吧)。
想法很简单就是想做一个单词种类的统计,首先是 Map 部分:(开始使用 Maven ,真的是神器,几个代码 jar 包就配好了)
我是用的是免费版的 idea,可以使用 Maven 功能,毕竟能不用盗版就不用盗版软件,不管是使用 idea 还是 eclipse 都可以新建一个 Marven Project。
然后配置 pom.xml,可以登陆 http://mvnrepository.com/ 查找 hadoop-common、hadoop-client、hadoop-mapreduce-client-jobclient 的对应你 Hadoop 版本的代码加入到文件中就好,我的是 2.7.3

然后在 pom.xml 中添加:
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-jobclient -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.7.3</version>
<scope>provided</scope>
</dependency>
</dependencies>
然后等待包加载完成就可以开心的写代码啦。因为会自动导入相关依赖,所以引入的包还是很多的,写的时候需要注意不要导错包。
首先是 Map 部分:
package test2;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class MyMap1 extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String [] words = line.split(" ");
for(String word:words){
context.write(new Text(word), new IntWritable(1));
}
}
}
然后是 Reduce:
package test;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MyReduce extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text text, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int count = 0;
for(IntWritable value: values) {
count+=value.get();
}
context.write(text,new IntWritable(count));
}
}
接下来是工作类:
package test;
import javax.servlet.ServletOutputStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MyJob extends Configured implements Tool{
public static void main(String[] args) {
try {
ToolRunner.run(new MyJob(), null);
System.out.println("运行结束!");
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
@Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.80.131:9000");
Job job = Job.getInstance(configuration);
job.setJarByClass(MyJob.class);
job.setMapperClass(MyMap1.class);
job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("/abc/MapReduceTest1.txt"));
FileOutputFormat.setOutputPath(job, new Path("/abc/out1"));
job.waitForCompletion(true);
return 0;
}
}
最后运行,多了一个 out 目录,运行结果在里面,

网友评论