本项目是通过Jenkins自动化部署成功的,写此文的目的是为了记录该过程,方便以后查阅
想将flask项目实现Jenkins自动化容器部署的同学可以参考此文
一、flask项目结构
flask项目结构二、各文件介绍
1. 项目中 manage.py
是flask项目在本地运行的启动文件,启动命令如下:
python .\manage.py runserver
其中manage.py
的内容如下:
# manage.py文件内容
from flask_script import Manager
from app import create_app
app = create_app('default')
manager = Manager(app=app)
if __name__ == '__main__':
manager.run()
manage.py
文件中的from app import create_app
定义在app
模块的__init__.py
文件中,内容如下:
from flask import Flask
from flask_pymongo import PyMongo
from config import config
# 创建数据库
mongo = PyMongo()
def create_app(config_name):
app = Flask(__name__)
# 加载配置文件
app.config.from_object(config[config_name])
# 初始化数据库
mongo.init_app(app)
# 导入蓝图,在app目录下面建一个test模块
from .test import blue as test_blueprint
# 注册蓝图
app.register_blueprint(test_blueprint, url_prefix='/api/v1')
return app
上面代码中的config
模块的中config.py
文件的内容如下:
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config:
SECRET_KEY = os.environ.get('SECRET_KEY') or 'hard to guess string'
SSL_REDIRECT = False
SQLALCHEMY_TRACK_MODIFICATIONS = False
SQLALCHEMY_RECORD_QUERIES = True
FLASKY_POSTS_PER_PAGE = 20
FLASKY_FOLLOWERS_PER_PAGE = 50
FLASKY_COMMENTS_PER_PAGE = 30
FLASKY_SLOW_DB_QUERY_TIME = 0.5
@staticmethod
def init_app(app):
pass
class DevelopmentConfig(Config):
DEBUG = True
MONGO_URI = "mongodb://localhost:27017/myDatabase"
class TestingConfig(Config):
TESTING = True
MONGO_URI = "mongodb://localhost:27017/myDatabase"
WTF_CSRF_ENABLED = False
class ProductionConfig(Config):
DEBUG = True
MONGO_URI = "mongodb://localhost:27017/myDatabase"
@classmethod
def init_app(cls, app):
Config.init_app(app)
class DockerConfig(ProductionConfig):
@classmethod
def init_app(cls, app):
ProductionConfig.init_app(app)
# log to stderr
import logging
from logging import StreamHandler
file_handler = StreamHandler()
file_handler.setLevel(logging.INFO)
app.logger.addHandler(file_handler)
config = {
'development': DevelopmentConfig,
'testing': TestingConfig,
'production': ProductionConfig,
'docker': DockerConfig,
'default': DevelopmentConfig
}
上面代码中的test
模块的__init__.py
文件的内容如下:
from flask import Blueprint
blue = Blueprint('test', __name__)
from . import test_api
上面代码中的test_api
就是test_api.py
文件,内容如下:
from . import blue
from flask import jsonify, request
from app import mongo
res = {
'code': 200,
'msg': '成功',
'success': True
}
error = {
'code': 100,
'msg': '出错了',
'success': False
}
@blue.route('/test', methods=['GET'])
def test():
print(request.method)
return jsonify(res)
2. 项目中gunicorn.conf.py
内容如下:
workers = 5 # 定义同时开启的处理请求的进程数量,根据网站流量适当调整
worker_class = "gevent" # 采用gevent库,支持异步处理请求,提高吞吐量
bind = "0.0.0.0:8888" # 监听IP放宽,以便于Docker之间、Docker和宿主机之间的通信
3. 项目中Dockerfile
文件内容如下:
FROM python:3.6
COPY . /app
WORKDIR /app
RUN pip install --upgrade pip && pip install -i https://mirrors.aliyun.com/pypi/simple -r requirements.txt
EXPOSE 5000
CMD ["gunicorn", "manage:app", "-c", "./gunicorn.conf.py"]
4. 项目中Jenkinsfile
文件内容如下:
pipeline{
// 定义groovy脚本中使用的环境变量
environment{
// 镜像标签
IMAGE_TAG = sh(returnStdout: true,script: 'echo $image_tag').trim()
// 镜像仓库地址
ORIGIN_REPO = sh(returnStdout: true,script: 'echo $origin_repo').trim()
// 镜像仓库名称
REPO = sh(returnStdout: true,script: 'echo $repo').trim()
// gitlab revision用于滚动更新镜像
REVISION = sh(returnStdout: true,script: 'echo $revision').trim()
// 项目名称
PROJECT_NAME = sh(returnStdout: true,script: 'echo $project_name').trim()
}
// 定义本次构建使用哪个标签的构建环境,本示例中为 “slave-pipeline”
agent{
node{
label 'slave-pipeline'
}
}
// "stages"定义项目构建的多个模块,可以添加多个 “stage”, 可以多个 “stage” 串行或者并行执行
stages{
// 运行容器镜像构建和推送命令, 用到了environment中定义的groovy环境变量
stage('Image Build And Publish'){
steps{
container("kaniko") {
sh "kaniko -f `pwd`/Dockerfile -c `pwd` --destination=${ORIGIN_REPO}/${REPO}:${IMAGE_TAG}"
}
}
}
stage('Deploy to Kubernetes') {
steps {
container('kubectl') {
step([$class: 'KubernetesDeploy', authMethod: 'certs', apiServerUrl: 'https://kubernetes.default.svc.cluster.local:443', credentialsId:'k8sCertAuth', config: 'deployment.yaml',variableState: 'ORIGIN_REPO,REPO,IMAGE_TAG,REVISION,PROJECT_NAME'])
}
}
}
}
}
5. 项目中deployment.yaml
文件内容如下:
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: ${PROJECT_NAME}
spec:
replicas: 2
selector:
matchLabels:
app: ${PROJECT_NAME}
template:
metadata:
labels:
app: ${PROJECT_NAME}
spec:
containers:
- name: ${PROJECT_NAME}
image: ${ORIGIN_REPO}/${REPO}:${IMAGE_TAG}
imagePullPolicy: Always
ports:
- containerPort: 8888
env:
- name: REVISION
value: ${REVISION}
imagePullSecrets:
- name: wangdi-docker-password
---
apiVersion: v1
kind: Service
metadata:
name: ${PROJECT_NAME}-svc
namespace: default
spec:
ports:
- name: port
port: 8500
protocol: TCP
targetPort: 8888
selector:
app: ${PROJECT_NAME}
type: NodePort
6. 项目中requirements.txt
文件内容如下:
flask
flask-pymongo
flask_script
gunicorn
gevent
7. 项目中.gitignore
文件内容如下:
*.py[cod]
# C extensions
*.so
# Packages
*.egg
*.egg-info
dist
build
eggs
parts
bin
var
sdist
develop-eggs
.installed.cfg
lib
lib64
__pycache__
logdir
# Installer logs
pip-log.txt
# Unit test / coverage reports
.coverage
.tox
nosetests.xml
# Translations
*.mo
# Mr Developer
.mr.developer.cfg
.project
.pydevproject
# SQLite databases
*.sqlite
# Virtual environment
venv
# Environment files
.env
.env-mysql
.vscode
三、部署项目
将上面各文件创建好之后将代码提交到gitlab
或者github
上面,接下来开始实现自动化部署。
1. 在k8s上面搭建jenkins,可以参考阿里云devops最佳实践
2. Jenkins配置如下图
-
在Jenkins中创建流水线
在Jenkins中创建流水线 -
给流水线设置初始化参数
给流水线设置初始化参数
给流水线设置初始化参数
给流水线设置初始化参数 -
开始参数化构建
开始参数化构建
-
构建成功
构建成功 -
在k8s集群查看运行的pod
kubectl get pod
pod运行成功
四、总结
这里完成了容器化devops的整个流程,项目的代码在github上面,点击这里查看。整个部署过程还是比较复杂的,需要对k8s和Jenkins都有了解才行,如果大家在实践过程中遇到问题欢迎留言,我们可以一起共同探讨解决问题。
网友评论