美文网首页机器学习实战
【阿旭机器学习实战】【22】特征降维实战---主成分分析(PCA

【阿旭机器学习实战】【22】特征降维实战---主成分分析(PCA

作者: 阿旭123 | 来源:发表于2022-11-26 22:08 被阅读0次

【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。

本文介绍了特征降维的两种方式主成分分析(PCA)与线性判别分析算法(LDA)。并且通过鸢尾花实际案例详细介绍了直接减少特征建模使用PCA建模以及使用线性判别分析算法进行建模这3种建模方式对预测准确率结果的影响。

目录

1. 特征降维的主要目的

1)在实际的项目中经常会遭遇到特征维度非常高的样本(比如图片),往往无法借助于自己领域的知识来构建有效的特征

2)在数据表现方面,我们无法观测超过三维的数据

2. 常见特征降维的算法是主成分分析:PCA

PCA算法核心:把高维度的向量向低维度投影

1)去平均值,即每一位特征减去各自的平均值

2)计算矩阵协方差和特征向量与特征值

3)把特征值从小到大排序

4)保留前K个特征值对应的特征向量

5)将数据投影到这K个特征所构成的一个新的向量空间中

3. PCA建模与直接减少特征数建模对比----鸢尾花数据集为例

3.1 直接减少特征数目建模

from sklearn import datasets
iris = datasets.load_iris()
data = iris.data
target = iris.target
data[:4]
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2]])
from sklearn.neighbors import KNeighborsClassifier
# 直接取前连个特征,舍去后面的两个特征然后进行建模
# 这里没有分析哪些特征是主成分,必然会造成主成分丢失
train = data[:,:2]
train[:2]
array([[5.1, 3.5],
       [4.9, 3. ]])
# 使用KNN算法进行建模
knn = KNeighborsClassifier()
# 训练模型
knn.fit(train,target)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')
# 模型在训练数据上的准确度
knn.score(train,target)
0.8333333333333334

3.2 不减少特征数目进行建模

knn = KNeighborsClassifier()
knn.fit(data,target)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')
knn.score(data,target)
0.9666666666666667

3.3 交叉验证–直接比较是否减少特征数目建模的准确率

交叉验证法不需要训练,直接传入模型和训练数据就可以输出每一次划分的准确率

from sklearn.model_selection import cross_val_score
cross_val_score(knn,train,target)
array([0.74509804, 0.74509804, 0.77083333])
cross_val_score(knn,data,target)
array([0.98039216, 0.98039216, 1.        ])

通过以上是否减少特征数据建模后预测准确度我们发现,不减少特征情况下建模准确率达到97%以上,而如果直接取前两个特征进行建模,模型准确度只有70%多,准确率相差还是很大的,说明如果直接减少特征数目降维,会丢失很多有用的信息,从而导致准确率降低。

下面我们用主成分分析PCA的方法进行降维,然后看其模型准确度如何

3.3 用PCA算法进行数据降维–然后进行评估

# 引入PCA算法
from sklearn.decomposition import PCA
# 构建2个特征
pca = PCA(n_components=2)
# 训练阶段通过主成分分析,找出主成分的特征空间
pca.fit(data)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)
# 转化阶段把数据由原来的空间投影到主成分空间
train_pca = pca.transform(data)
# 交叉验证计算每次建模的准确率
cross_val_score(knn,train_pca,target)
array([0.98039216, 0.94117647, 0.97916667])

我们可以看到,通过PCA方法进行建模后,模型准确率与不减少特征直接建模的准确率差不多,效果还是非常好的

4. 监督学习算法的特征降维----线性判别分析算法(LDA)

通过主成分分析PCA降维以后可以大大的提高监督学习算法的性能。

主成分分析PCA降维属于无监督学习的一种降维方法,下面介绍一种监督学习算法的降维方法--LDA算法。由于监督学习算法需要考虑标签,因此它的效率低于PCA。

# 导入LDA算法--线性判别分析算法(linear discriminant analysis,LDA)
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
#创建lda模型
lda = LinearDiscriminantAnalysis(n_components=2)
# 训练算法并转化数据,借用上述例子中的鸢尾花数据
train_lda = lda.fit_transform(data,target)
cross_val_score(knn,train_lda,target)
array([1.        , 0.94117647, 1.        ])

可以发现,这种LDA的降维方法也是很好的,准确率相比于原始数据建模相差不多。

如果内容对你有帮助,感谢点赞+关注哦!

更多干货内容持续更新中…

相关文章

  • 主成分分析

    主成分分析 ##主成分分析pca-R语言实战::pca是把许多个体的不同特征转...

  • PCA算法推导

    一、PCA降维 1.PCA简介 PCA(主成分分析)是一种数据降维的方法,即用较少特征地数据表达较多特征地数据(数...

  • 预处理:主成分分析与白化

    UFLDL Tutorial学习笔记 PCA 主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算...

  • 5 主成分分析PCA

    主成分分析(PCA)是最常见的降维算法。 PCA是非监督的机器学习算法 主要用于数据的降维 其他应用:可视化、去噪...

  • 【R实战 高级方法】十四、主成分和因子分析

    这里是佳奥!R实战部分的学习进入后期,我们继续高级方法的学习。 主成分分析(PCA)是一种数据降维技巧,它能将大量...

  • 特征值和特征向量

    介绍 特征向量和特征值在计算机视觉和机器学习中有许多重要的应用。众所周知的例子是PCA(主成分分析)进行降维或人脸...

  • 【R图千言】主成分分析之3D绘图

    主成分分析 (PCA, principal component analysis)是一种数学降维方法。 PCA降维...

  • StatQuest掠影:PCA in R

    什么是PCA pca是一种,降维技术。主成分分析(pca)的目的就是要从这些现有的特征中重建新的特征,新的特征剔除...

  • 利用 PCA 来对数据降维

    降维往往作为预处理步骤,其中独立成分分析、因子分析和主成分分析比较流行,主成分分析(PCA)最为广泛。 PCA借助...

  • Python数据分析与机器学习35-PCA降维

    一. PCA概述 PCA是Principal Component Analysis,主成分分析。 用途:降维中最常...

网友评论

    本文标题:【阿旭机器学习实战】【22】特征降维实战---主成分分析(PCA

    本文链接:https://www.haomeiwen.com/subject/iqfhfdtx.html